Skip to main content

Advertisement

Log in

Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR−/−).

Methods

Wild-type mice or PAFR−/− mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured.

Results

5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-α, IL-1β and KC in comparison with saline-treated animals. In PAFR−/− mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-α, IL-1β and KC concentration.

Conclusions

In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baerg J, Murphy JJ, Anderson R, Magee JF (1999) Neutropenic enteropathy: a 10-year review. J Pediatr Surg 34:1068–1071

    Article  PubMed  CAS  Google Scholar 

  2. Borman RA, Jewell R, Hillier K (1998) Investigation of the effects of platelet-activating factor (PAF) on ion transport and prostaglandin synthesis in human colonic mucosa in vitro. Br J Pharmacol 123:231–236

    Article  PubMed  CAS  Google Scholar 

  3. Bowen JM, Gibson RJ, Cummins AG, Keefe DM (2006) Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Support Care Cancer 14:713–731

    Article  PubMed  Google Scholar 

  4. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622

    PubMed  CAS  Google Scholar 

  5. Caplan MS, Hedlund E, Adler L, Lickerman M, Hsueh W (1997) The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 24:296–301

    Article  PubMed  CAS  Google Scholar 

  6. Chao W, Liu H, Hanahan DJ, Olson MS (1192) Platelet-activating factor-stimulated protein tyrosine phosphorylation and eicosanoid synthesis in rat Kupffer cells. Evidence for calcium-dependent and protein kinase C-dependent and -independent pathways. J Biol Chem 267:6725–6735

    Google Scholar 

  7. Chao W, Olson MS (1993) Platelet-activating factor: receptors and signaltransduction. Biochem J 292:617–629

    PubMed  CAS  Google Scholar 

  8. Cunha FQ, Boukili MA, Motta JIB, Vargaftig BB, Ferreira SH (1993) Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. Eur J Pharmacol 238:47–52

    Article  PubMed  CAS  Google Scholar 

  9. Debek W, Chyczewski L, Makarewicz M (1998) Platelet-activating factor receptor-antagonist (BN 52021) stabilizes the oxidative-antioxidative balance and attenuates the morphological changes in the gastrointestinal tract in experimental hemorrhagic shock. Exp Toxicol Pathol 50:19–25

    PubMed  CAS  Google Scholar 

  10. Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18:853–874

    Article  PubMed  CAS  Google Scholar 

  11. Dupont L, Germain G, Dideberg O (1986) Crystal and molecular structure of BN 52021, a PAF-acether antagonist. Comparison with the conformation of Kadsurenone and related compounds. Pharmacol Res Commun 18:25–32

    Article  PubMed  CAS  Google Scholar 

  12. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, Havill AM, Lu ZN, Aukerman SL, Pierce GF, Thomason A, Potten CS, Ulich TR, Lacey DL (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939

    PubMed  CAS  Google Scholar 

  13. Ferreira MA, Barcelos LS, Teixeira MM, Bakhle YS, Andrade SP (2007) Tumor growth, angiogenesis and inflammation in mice lacking receptors for platelet activating factor (PAF). Life Sci 81:210–217

    Article  PubMed  CAS  Google Scholar 

  14. Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, Aspiotis R, Han Y, Nicholson DW, Karl IE (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501

    Article  PubMed  CAS  Google Scholar 

  15. Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F (2003) Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 6:6–23

    Article  PubMed  Google Scholar 

  16. Hsueh W, Gonzalez-Crussi F, Arroyave JL (1987) Platelet-activating factor: an endogenous mediator for bowel necrosis in endotoxemia. FASEB J 1:403–405

    PubMed  CAS  Google Scholar 

  17. Huang TY, Chu HC, Lin YL, Ho WH, Hou HS, Chao YC, Liao CL (2009) Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model. Biochem Biophys Res Commun 389:634–639

    Article  PubMed  CAS  Google Scholar 

  18. Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K, Fukuchi Y, Ikuta K, Miyazaki J, Kumada M, Shimizu T (1988) Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 187:1779–1788

    Article  Google Scholar 

  19. Kuijpers TW, Van Den Berg JM, Tool AT, Roos D (2001) The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase. Clin Exp Immunol 123:412–420

    Article  PubMed  CAS  Google Scholar 

  20. Liu SX, Tian R, Baskind H, Hsueh W, De Plaen IG (2009) Platelet-activating factor induces the processing of nuclear factor-kappaB p105 into p50, which mediates acute bowel injury in mice. Am J Physiol Gastrointest Liver Physiol 297:G76–G81

    Article  PubMed  CAS  Google Scholar 

  21. Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63:239–251

    Article  PubMed  CAS  Google Scholar 

  22. Longley DB, Harkin D, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  PubMed  CAS  Google Scholar 

  23. Lu J, Caplan MS, Li D, Jilling T (2008) Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 294:G1181–G1190

    Article  PubMed  CAS  Google Scholar 

  24. Meenan J, Grool TA, Hommes DW, Dijkhuizen S, Ten Kate FJ, Wood M, Whittaker M, Tytgat GN, Van Deventer SJ (1996) Lexipafant (BB-882), a platelet activating factor receptor antagonist, ameliorates mucosal inflammation in an animal model of colitis. Eur J Gastroenterol Hepatol 8:569–573

    Article  PubMed  CAS  Google Scholar 

  25. Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, Soares PM, Vale ML, Souza MH, Cunha FQ, Ribeiro RA (2008) Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol 61:775–784

    Article  PubMed  CAS  Google Scholar 

  26. Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF (1999) Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol Gastrointest Liver Physiol 277:G810–G818

    CAS  Google Scholar 

  27. Moreno SE, Alves-Filho JC, Rios-Santos F, Silva JS, Ferreira SH, Cunha FQ, Teixeira MM (2006) Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J Immunol 177:1264–1271

    PubMed  CAS  Google Scholar 

  28. Muguruma K, Gray PW, Tjoelker LW, Johnston JM (1997) The central role of PAF in necrotizing enterocolitis development. Adv Exp Med Biol 407:379–382

    PubMed  CAS  Google Scholar 

  29. Orazi A, Du X, Yang Z, Kashai M, Williams DA (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 75:33–42

    PubMed  CAS  Google Scholar 

  30. Pritchard DM, Jackman A, Potten CS, Hickman JA (1998) Chemically-induced apoptosis: p21 and p53 as determinants of enterotoxin activity. Toxicol Lett 102–103:19–27

    Article  PubMed  Google Scholar 

  31. Qu X, Huang L, Burthart T, Crawford SE, Caplan MS, Hsueh W (1996) Endotoxin induces PAF production in the rat ileum: quantitation of tissue PAF by an improved method. Prostaglandins 51:249–262

    Article  PubMed  CAS  Google Scholar 

  32. Ribeiro RA, Flores CA, Cunha FQ, Ferreira SH (1991) IL-8 causes in vivo neutrophil migration by a cell-dependent mechanism. Immunology 73:472–477

    PubMed  CAS  Google Scholar 

  33. Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ (1995) Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115:1265–1275

    PubMed  CAS  Google Scholar 

  34. Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63:91–98

    Article  PubMed  CAS  Google Scholar 

  35. Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced tomato toxicity. Oral Oncol 34:39–43

    Article  PubMed  CAS  Google Scholar 

  36. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

    Article  PubMed  Google Scholar 

  37. Souza DG, Fagundes CT, Sousa LP, Amaral FA, Souza RS, Souza AL, Kroon EG, Sachs D, Cunha FQ, Bukin E, Atrasheuskaya A, Ignatyev G, Teixeira MM (2009) Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc Natl Acad Sci USA 106:14138–14143

    Article  PubMed  CAS  Google Scholar 

  38. Souza DG, Pinho V, Soares AC, Shimizu T, Ishii S, Teixeira MM (2003) Role of PAF receptors during intestinal ischemia and reperfusion injury. A comparative study between PAF receptor-deficient mice and PAF receptor antagonist treatment. Br J Pharmacol 139:733–740

    Article  PubMed  CAS  Google Scholar 

  39. Strater J, Wellisch I, Riedl S, Walczak H, Koretz K, Tandara A, Krammer PH, Moller P (1997) CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113:160

    Article  PubMed  CAS  Google Scholar 

  40. Sun XM, Hsueh W (1988) Bowel necrosis induced by tumor necrosis factor in rats is mediated by platelet-activating factor. J Clin Invest 81:1328–1331

    Article  PubMed  CAS  Google Scholar 

  41. Venkatesha RT, Ahamed J, Nuesch C, Zaidi AK, Ali H (2004) Platelet-activating factor induced chemokine gene expression requires NF-kappaB activation and Ca2þ/calcineurin signaling pathways. Inhibition by receptor phosphorylation and beta-arrestin recruitment. J Biol Chem 279:44606–44612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) and the technical assistance of Maria Silvandira Freire França. Drs. Brito, Ribeiro, Cunha, and Souza, who are recipients of CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. G. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, P.M.G., Lima-Junior, R.C.P., Mota, J.M.S.C. et al. Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 68, 713–720 (2011). https://doi.org/10.1007/s00280-010-1540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1540-5

Keywords

Navigation