Skip to main content
Log in

Modified approaches to solve matrix games with payoffs of single-valued trapezoidal neutrosophic numbers

  • Foundation, algebraic, and analytical methods in soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Seikh and Dutta (Soft Comput 26: 921–936, 2022) claimed that there does not exist any approach to solve single-valued trapezoidal neutrosophic (SVTrN) matrix games (matrix games in which each payoff is represented by a SVTrN number). To fill this gap, Seikh and Dutta, firstly, proposed SVTrN non-linear programming problems (NLPPs) corresponding to Player-I and Player-II. Then, Seikh and Dutta proposed two different approaches to transform the proposed SVTrN NLPPs into crisp linear programming problems (CLPPs). Finally, Seikh and Dutta claimed that an optimal solution of the transformed CLPPs also represents an optimal solution of SVTrN NLPPs. Brikaa (Soft Comput 26: 9137–9139, 2022) pointed out that a mathematically incorrect result is considered in Seikh and Dutta’s first approach to transform SVTrN NLPPs into CLPPs. Therefore, the transformed CLPPs are not equivalent to SVTrN NLPPs. Hence, it is mathematically incorrect to assume that an optimal solution of the transformed CLPPs also represents an optimal solution of SVTrN NLPPs. Brikaa also proposed an approach to transform the SVTrN NLPPs into CLPPs. In this paper, it is pointed out that on solving the CLPPs, obtained by Brikaa’s approach corresponding to SVTrN NLPPs of Player-I and Player-II, different optimal value is obtained. Also, it is pointed out that on solving the CLPPs, obtained by Seikh and Dutta’s second approach corresponding to SVTrN NLPPs of Player-I and Player-II, a different optimal value is obtained. However, in the actual case, the obtained optimal value should be the same as in the literature; it is proved that the CLPPs corresponding to Player-I and Player-II represent a primal–dual pair. This indicates that neither the CLPPs, obtained by Brikaa’s approach nor the CLPPs, obtained by Seikh and Dutta’s second approach, are equivalent to the SVTrN NLPPs of Player-I and Player-II. Hence, it is inappropriate to use the CLPPs, obtained by Brikaa’s approach as well as Seikh and Dutta’s second approach to find an optimal solution for the SVTrN NLPPs of Player-I and Player-II. Also, Brikaa’s approach as well as Seikh and Dutta’s second approach is modified to transform SVTrN NLPPs into their equivalent CLPPs. Furthermore, it is proved that the CLPPs corresponding to SVTrN NLPPs of Player-I and Player-II, obtained by the proposed modified approaches, represent a primal–dual pair. Finally, the correct result of a SVTrN matrix game, considered by Seikh and Dutta to illustrate their approaches, is obtained by the proposed modified approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi S, Daneshmand-Mehr M, Kanafi AG (2021) The sustainable supply chain of CO2 emissions during the coronavirus disease (COVID-19) pandemic. J Ind Eng Int 17(4):83–108

    Google Scholar 

  • Abbasi S, Sicakyuz C, Erdebilli B (2023) Designing the home healthcare supply chain during a health crisis. J Eng Res. https://doi.org/10.1016/j.jer.2023.100098

    Article  Google Scholar 

  • Atanassov K, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    Article  MathSciNet  Google Scholar 

  • Bector CR, Chandra S (2005) Fuzzy mathematical programming and fuzzy matrix games, vol 169. Springer, Berlin

    Google Scholar 

  • Bhaumik A, Roy SK (2021) Intuitionistic interval-valued hesitant fuzzy matrix games with a new aggregation operator for solving management problem. Granul Comput 6(3):359–375

    Article  Google Scholar 

  • Brikaa MG (2022) A Note on “Solution of matrix games with payoffs of single-valued trapezoidal neutrosophic numbers.” Soft Comput 26:9137–9139

    Article  Google Scholar 

  • Brikaa MG, Zheng Z, Ammar ES (2022) Mehar approach for solving matrix games with triangular dual hesitant fuzzy payoffs. Granul Comput 7(1):731–750

    Article  Google Scholar 

  • Chen ZH, Wu DF, Luo W (2023) A hybrid emergency decision-making technique based on trapezoidal fuzzy best-worst method and zero-sum game. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2023.120990

    Article  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Op Res 48(2):219–225

    Article  Google Scholar 

  • Jana J, Roy SK (2019) Dual hesitant fuzzy matrix games: based on new similarity measure. Soft Comput 23(18):8873–8886

    Article  Google Scholar 

  • Jana J, Roy SK (2023) Linguistic Pythagorean hesitant fuzzy matrix game and its application in multi-criteria decision making. Appl Intell 53(1):1–22

    Article  Google Scholar 

  • Jangid V, Kumar G (2021) Matrix games with single-valued triangular neutrosophic numbers as payoffs. Neutrosophic Sets Syst 45:197–217

    Google Scholar 

  • Karmakar S, Seikh MR (2023) Bimatrix games under dense fuzzy environment and its application to natural disaster management. Artif Intell Rev 56(3):2241–2278

    Article  Google Scholar 

  • Li DF, Hong FX (2013) Alfa-cut based linear programming methodology for constrained matrix games with payoffs of trapezoidal fuzzy numbers. Fuzzy Optim Decis Mak 12(2):191–213

    Article  MathSciNet  Google Scholar 

  • Li Z, Li S, Luo X (2021) An overview of calibration technology of industrial robots. IEEE/CAA J Autom Sin 8(1):23–36

    Article  Google Scholar 

  • Li DF, Liu JC (2015) A parameterized nonlinear programming approach to solve matrix games with payoffs of intuitionistic fuzzy numbers. IEEE Trans Fuzzy Syst 23(4):885–896

    Article  Google Scholar 

  • Li DF, Nan JX (2009) A nonlinear programming approach to matrix games with payoffs of Atanassov’s intuitionistic fuzzy sets. Int J Uncertain Fuzziness Knowledge-Based Syst 17(4):585–607

    Article  MathSciNet  Google Scholar 

  • Li S, Zhou M, Luo X (2017) Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans Neural Netw Learn Syst 29(10):4791–4801

    Article  MathSciNet  Google Scholar 

  • Liu FB, Hu CF (2023) Fuzzy game approach network data envelopment analysis models for the waste management performance evaluation. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-023-01565-3

    Article  Google Scholar 

  • Naqvi DR, Verma R, Aggarwal A, Sachdev G (2023) Solutions of matrix games involving linguistic interval-valued intuitionistic fuzzy sets. Soft Comput 27(1):783–808

    Article  Google Scholar 

  • Seikh MR, Dutta S (2022) Solution of matrix games with payoffs of single-valued trapezoidal neutrosophic numbers. Soft Comput 26(3):921–936

    Article  Google Scholar 

  • Seikh MR, Karmakar S, Xia M (2020) Solving matrix games with hesitant fuzzy payoffs. Iran J Fuzzy Syst 17(4):25–40

    MathSciNet  Google Scholar 

  • Sharma G, Das SK, Kumar G (2023) Solving zero-sum two-person game with triangular fuzzy number payoffs using new fully fuzzy linear programming models. Opsearch. https://doi.org/10.1007/s12597-023-00642-3

    Article  MathSciNet  Google Scholar 

  • Singla N, Kaur P, Gupta UC (2023) A new approach to solve intuitionistic fuzzy bi-matrix games involving multiple opinions. Iran J Fuzzy Syst 20(1):185–197

    Google Scholar 

  • Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

    Google Scholar 

  • Verma T (2021) A novel method for solving constrained matrix games with fuzzy payoffs. J Intell Fuzzy Syst 40(1):191–204

    Article  Google Scholar 

  • Verma R, Aggarwal A (2021a) Matrix games with linguistic intuitionistic fuzzy payoffs: basic results and solution methods. Artif Intell Rev 54(4):5127–5162

    Article  Google Scholar 

  • Verma R, Aggarwal A (2021b) On matrix games with 2-tuple intuitionistic fuzzy linguistic payoffs. Iran J Fuzzy Syst 18(4):149–167

    MathSciNet  Google Scholar 

  • Verma R, Singla N, Yager RR (2023) Matrix games under a Pythagorean fuzzy environment with self-confidence levels: formulation and solution approach. Soft Comput. https://doi.org/10.1007/s00500-023-08785-7

    Article  Google Scholar 

  • Xue W, Xui Z, Mi X (2021) Solving hesitant fuzzy linguistic matrix game problems for multiple attribute decision making with prospect theory. Comput Ind Eng 161(1):107619. https://doi.org/10.1016/j.cie.2021.107619

    Article  Google Scholar 

  • Yang Z, Song Y (2020) Matrix game with payoffs represented by triangular dual hesitant fuzzy numbers. Int J Comput Commun Control 15(3):3854. https://doi.org/10.15837/ijccc.2020.3.3854

    Article  Google Scholar 

  • Yang J, Xu Z (2022) Matrix game-based approach for MADM with probabilistic triangular intuitionistic hesitant fuzzy information and its application. Comput Ind Eng 163(1):107787. https://doi.org/10.1016/j.cie.2021.107787

    Article  Google Scholar 

  • Yang J, Xu Z, Dia Y (2021) Simple non-cooperative games with intuitionistic fuzzy information and application in ecological management. Appl Intell 51(2):1–13

    Google Scholar 

  • Yu N, Yang R, Huang M (2022) Deep common spatial pattern based motor imagery classification with improved objective function. Int J Netw Dyn Intell 1(1):73–84

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Associate Editor “Professor Xin Luo” and the anonymous reviewers for their valuable and constructive suggestions to improve the quality of the paper.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

It is obvious from Sect. 6.1 that the base of the first proposed modified approach is the CLPPs (P41) and (P42). These CLPPs are obtained as follows:

Step 1: Using the expressions (11) and (12) (named as expressions (E.1) and (E.2), respectively), proved in Sect. 4.2.1, to find an optimal solution of the interval-valued NLPPs (P15) and (P16) is equivalent to find an optimal solution of the interval-valued NLPPs (A-1) and (A-2) respectively.

$${\left(\sum\limits_{j=1}^{n}\sum\limits_{i=1}^{m}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle {u}_{i}{v}_{j}\right)}_{k}=\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}{\left({\widetilde{b}}_{ij}\right)}_{k}{u}_{i}\right){v}_{j}; k=\rho ,\sigma ,\tau $$
(E.1)
$${\left(\sum\limits_{j=1}^{n}\sum\limits_{i=1}^{m}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle {u}_{i}{v}_{j}\right)}_{k}=\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}{\left({\widetilde{b}}_{ij}\right)}_{k}{v}_{j}\right){u}_{i}; k=\rho ,\sigma ,\tau $$
(E.2)

where,

$${\widetilde{b}}_{ij}=\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{minimum}_{\begin{array}{c}1\le i\le m\\ 1\le j\le n\end{array}}\left\{{l}_{ij}\right\},{maximum}_{\begin{array}{c}1\le i\le m\\ 1\le j\le n\end{array}}\left\{{m}_{ij}\right\},{maximum}_{\begin{array}{c}1\le i\le m\\ 1\le j\le n\end{array}}\left\{{n}_{ij}\right\}\Bigg\rangle $$

Problem (A-1)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}{\left({\widetilde{b}}_{ij}\right)}_{\rho }{u}_{i}\right){v}_{j}\right\}\\ Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}{\left({\widetilde{b}}_{ij}\right)}_{\sigma }{u}_{i}\right){v}_{j}\right\}\\ Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}{\left({\widetilde{b}}_{ij}\right)}_{\tau }{u}_{i}\right){v}_{j}\right\} \\ {\text{Subject to}} \\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-2)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}{\left({\widetilde{b}}_{ij}\right)}_{\rho }{v}_{j}\right){u}_{i}\right\}\\ Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}{\left({\widetilde{b}}_{ij}\right)}_{\sigma }{v}_{j}\right){u}_{i}\right\}\\ Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}{\left({\widetilde{b}}_{ij}\right)}_{\tau }{v}_{j}\right){u}_{i}\right\} \\ {\text{Subject to}} \\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 2: Using the expression (E.3) to find an optimal solution of the interval-valued NLPPs (A-1) and (A-2) is equivalent to find an optimal solution of the interval-valued NLPPs (A-3) and (A-4) respectively.

$${\left({\widetilde{b}}_{ij}\right)}_{k}=\left[{\left({b}_{ij}\right)}_{lk},{\left({b}_{ij}\right)}_{rk}\right];k=\rho ,\sigma ,\tau $$
(E.3)

Problem (A-3)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left[{\left({b}_{ij}\right)}_{l\rho },{\left({b}_{ij}\right)}_{r\rho }\right]{u}_{i}\right){v}_{j}\right\}\\ Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left[{\left({b}_{ij}\right)}_{l\sigma },{\left({b}_{ij}\right)}_{r\sigma }\right]{u}_{i}\right){v}_{j}\right\}\\ Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left[{\left({b}_{ij}\right)}_{l\tau },{\left({b}_{ij}\right)}_{r\tau }\right]{u}_{i}\right){v}_{j}\right\}\\ {\text{Subject to}} \\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-4)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left[{\left({b}_{ij}\right)}_{l\rho },{\left({b}_{ij}\right)}_{r\rho }\right]{v}_{j}\right){u}_{i}\right\}\\ Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left[{\left({b}_{ij}\right)}_{l\sigma },{\left({b}_{ij}\right)}_{r\sigma }\right]{v}_{j}\right){u}_{i}\right\}\\ Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left[{\left({b}_{ij}\right)}_{l\tau },{\left({b}_{ij}\right)}_{r\tau }\right]{v}_{j}\right){u}_{i}\right\}\\ {\text{Subject to}} \\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 3: Aggregating the objective function of the interval-valued NLPPs (A-3) and (A-4), to find an optimal solution of the interval-valued NLPPs (A-3) and (A-4) is equivalent to find an optimal solution of the interval-valued NLPPs (A-5) and (A-6) respectively.

Problem (A-5)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left[\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3},\frac{{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{3}\right]{u}_{i}\right){v}_{j}\right\}\\ {\text{Subject to}}\\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-6)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left[\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3},\frac{{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{3}\right]{v}_{j}\right){u}_{i}\right\}\\ {\text{Subject to}}\\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 4: To find an optimal solution of the interval-valued NLPPs (A-5) and (A-6) is equivalent to find an optimal solution of the crisp bi-objective NLPPs (A-7) and (A-8) respectively.

Problem (A-7)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left\{\begin{array}{c}\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3},\\ \frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{l\tau }+{\left({b}_{ij}\right)}_{r\tau }}{6}\end{array}\right\}{u}_{i}\right){v}_{j}\right\}\\ {\text{Subject to}}\\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-8)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left\{\begin{array}{c}\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3},\\ \frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{l\tau }+{\left({b}_{ij}\right)}_{r\tau }}{6}\end{array}\right\}{v}_{j}\right){u}_{i}\right\}\\ {\text{Subject to}}\\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 5: Using the weighted average method, to find an optimal solution of the crisp bi-objective NLPPs (A-7) and (A-8) is equivalent to find an optimal solution of the crisp NLPPs (A-9) and (A-11) or the equivalent crisp NLPPs (A-10) and (A-12) respectively.

Problem (A-9)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\frac{1}{2}\left(\begin{array}{c}\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3}+\\ \frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{l\tau }+{\left({b}_{ij}\right)}_{r\tau }}{6}\end{array}\right){u}_{i}\right){v}_{j}\right\}\\ {\text{Subject to}}\\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-10)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){u}_{i}\right){v}_{j}\right\}\\ {\text{Subject to}}\\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (A-11)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\frac{1}{2}\left(\begin{array}{c}\frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }}{3}+\\ \frac{{\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{l\tau }+{\left({b}_{ij}\right)}_{r\tau }}{6}\end{array}\right){v}_{j}\right){u}_{i}\right\}\\ {\text{Subject to}}\\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Problem (A-12)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){v}_{j}\right){u}_{i}\right\}\\ {\text{Subject to}}\\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 6: Since

$$\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){u}_{i}\right){v}_{j}$$

is a convex linear combination of

$$\sum\limits_{i=1}^{m}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){u}_{i}, j=\mathrm{1,2},\dots ,n$$

and

$$\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){v}_{j}\right){u}_{i}$$

is a convex linear combination of

$$\sum\limits_{j=1}^{n}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){v}_{j}, i=\mathrm{1,2},\dots ,m$$

. So, to find an optimal solution of the crisp NLPPs (A-10) and (A-12) is equivalent to find an optimal solution of the CLPPs (A-13) and (A-14).

Problem (A-13)

$$Maximize \left\{{Minimum}_{1\le j\le n}\left\{\sum\limits_{i=1}^{m}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){u}_{i}\right\}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0.$$

Problem (A-14)

$$Minimize \left\{{Maximum}_{1\le i\le m}\left\{\sum\limits_{j=1}^{n}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){v}_{j}\right\}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 7: Assuming

$${Minimum}_{1\le j\le n}\left\{\sum\limits_{i=1}^{m}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){u}_{i}\right\}=\theta $$

and

$${Maximum}_{1\le i\le m}\left\{\sum\limits_{j=1}^{n}\left(\frac{3\left({\left({b}_{ij}\right)}_{l\rho }+{\left({b}_{ij}\right)}_{l\sigma }+{\left({b}_{ij}\right)}_{l\tau }\right)+{\left({b}_{ij}\right)}_{r\rho }+{\left({b}_{ij}\right)}_{r\sigma }+{\left({b}_{ij}\right)}_{r\tau }}{12}\right){v}_{j}\right\}=\phi $$

to find an optimal solution of the CLPPs (A-13) and (A-14) is equivalent to find an optimal solution of the CLPPs (P41) and (P42) respectively.

Appendix B

It is obvious from Sect. 6.2 that the base of the second proposed modified approach is the CLPPs (P43) and (P44). These CLPPs are obtained as follows:

Step 1: Using the expressions (23) and (24) (named as (F.1) and (F.2) respectively) proved in Sect. 5.2, to find an optimal solution of the crisp NLPPs (P31) and (P32) is equivalent to find an optimal solution of the crisp NLPPs (B-1) and (B-2), respectively.

$${\Pi }_{\alpha }\left(\sum\limits_{j=1}^{n}\left(\sum\limits_{i=1}^{m}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle {u}_{i}\right){v}_{j}\right)=$$
$$\sum\limits_{j=1}^{n}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right){v}_{j}$$
(F.1)
$${\Pi }_{\alpha }\left(\sum\limits_{i=1}^{m}\left(\sum\limits_{j=1}^{n}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle {v}_{j}\right){u}_{i}\right)=$$
$$\sum\limits_{i=1}^{m}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right){u}_{i}$$
(F.2)

where,

\({\gamma }_{i}=\left[\alpha {\left({minimum}_{1\le j\le n}\left\{{l}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\right)}^{2}\right],\) \({\gamma }_{j}=\left[\alpha {\left({minimum}_{1\le i\le m}\left\{{l}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\right)}^{2}\right]\) and

$$\gamma =\left[\alpha {\left({minimum}_{\begin{array}{c} 1\le i\le m\\ 1\le j\le n\end{array}}\left\{{l}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{ \begin{array}{c} 1\le i\le m\\ 1\le j\le n\end{array}}\left\{{m}_{ij}\right\}\right)}^{2}+\left(1-\alpha \right){\left(1-{maximum}_{ \begin{array}{c} 1\le i\le m\\ 1\le j\le n\end{array}}\left\{{n}_{ij}\right\}\right)}^{2}\right]$$

Problem (B-1)

$$Maximize \left\{\begin{array}{c}Minimize\left\{\sum\limits_{j=1}^{n}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right){v}_{j}\right\}\\ {\text{Subject to}}\\ \sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n\end{array}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (B-2)

$$Minimize \left\{\begin{array}{c}Maximize\left\{\sum\limits_{i=1}^{m}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right){u}_{i}\right\}\\ {\text{Subject to}}\\ \sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m\end{array}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 2: Since,

$$\sum\limits_{j=1}^{n}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right){v}_{j}$$

is a convex linear combination of

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right), j=\mathrm{1,2},\dots ,n$$

and

$$\sum\limits_{i=1}^{m}\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right){u}_{i}$$

is a convex linear combination of

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right), i=\mathrm{1,2},\dots ,m$$

. So, to find an optimal solution of the crisp NLPPs (B-1) and (B-2) is equivalent to find an optimal solution of the crisp NLPPs (B-3) and (B-4), respectively.

Problem (B-3)

$$Maximize \left\{{Minimum}_{1\le j\le n}\left\{\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right)\right\}\right\}$$

Subject to

$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (B-4)

$$Minimize \left\{{Maximum}_{1\le i\le m}\left\{\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right)\right\}\right\}$$

Subject to

$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 3: Assuming,

$${Minimum}_{1\le j\le n}\left\{\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right)\right\}={\Omega }_{1}$$

and

$${Maximum}_{1\le i\le m}\left\{\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right)\right\}={\Omega }_{2}$$

to find an optimal solution of the crisp NLPPs (B-3) and (B-4) is equivalent to find an optimal solution of the CLPPs (B-5) and (B-6), respectively.

Problem (B-5)

$$Maximize \left\{{\Omega }_{1}\right\}$$

Subject to

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{i=1}^{m}{a}_{ij1}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij2}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij3}{u}_{i},\sum\limits_{i=1}^{m}{a}_{ij4}{u}_{i}\right);\\ {minimum}_{1\le i\le m}\left\{{l}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{m}_{ij}\right\},{maximum}_{1\le i\le m}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{j}}\right)\ge {\Omega }_{1}, j=\mathrm{1,2},\dots ,n,$$
$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (B-6)

$$Minimize \left\{{\Omega }_{2}\right\}$$

Subject to

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\Bigg\langle \begin{array}{c}\left(\sum\limits_{j=1}^{n}{a}_{ij1}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij2}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij3}{v}_{j},\sum\limits_{j=1}^{n}{a}_{ij4}{v}_{j}\right);\\ {minimum}_{1\le j\le n}\left\{{l}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{m}_{ij}\right\},{maximum}_{1\le j\le n}\left\{{n}_{ij}\right\}\end{array}\Bigg\rangle \right)}{{\gamma }_{i}}\right)\le {\Omega }_{2}, i=\mathrm{1,2},\dots ,m,$$
$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 4: To find an optimal solution of the crisp NLPPs (B-5) and (B-6) is equivalent to find an optimal solution of the CLPPs (B-7) and (B-8) respectively.

Problem (B-7)

$$Maximize \left\{{\Omega }_{1}\right\}$$

Subject to

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\sum\limits_{i=1}^{m}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle \right){u}_{i}}{{\gamma }_{j}}\right)\ge {\Omega }_{1}, j=\mathrm{1,2},\dots ,n,$$
$$\sum\limits_{i=1}^{m}{u}_{i}=1, {u}_{i}\ge 0, i=\mathrm{1,2},\dots ,m.$$

Problem (B-8)

$$Minimize \left\{{\Omega }_{2}\right\}$$

Subject to

$$\gamma \left(\frac{{\Pi }_{\alpha }\left(\sum\limits_{j=1}^{n}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle \right){v}_{j}}{{\gamma }_{i}}\right)\le {\Omega }_{2}, i=\mathrm{1,2},\dots ,m,$$
$$\sum\limits_{j=1}^{n}{v}_{j}=1, {v}_{j}\ge 0, j=\mathrm{1,2},\dots ,n.$$

Step 5: Using the expressions (F.3) and (F.4), to find an optimal solution of the crisp NLPPs (B-7) and (B-8) is equivalent to find an optimal solution of the CLPPs (B-43) and (B-44) respectively.

$$\frac{{\Pi }_{\alpha }\left(\sum\limits_{i=1}^{m}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle \right){u}_{i}}{{\gamma }_{j}}=\sum\limits_{i=1}^{m}\left(\frac{{a}_{ij1}+2\left({a}_{ij2}+{a}_{ij3}\right)+{a}_{ij4}}{6}\right){u}_{i}$$
(F.3)
$$\frac{{\Pi }_{\alpha }\left(\sum\limits_{j=1}^{n}\Bigg\langle \left({a}_{ij1},{a}_{ij2},{a}_{ij3},{a}_{ij4}\right);{l}_{ij},{m}_{ij},{n}_{ij}\Bigg\rangle \right){v}_{j}}{{\gamma }_{i}}=\sum\limits_{j=1}^{n}\left(\frac{{a}_{ij1}+2\left({a}_{ij2}+{a}_{ij3}\right)+{a}_{ij4}}{6}\right){v}_{j}$$
(F.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirti, Verma, T. & Kumar, A. Modified approaches to solve matrix games with payoffs of single-valued trapezoidal neutrosophic numbers. Soft Comput 28, 1–50 (2024). https://doi.org/10.1007/s00500-023-09133-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09133-5

Keywords

Navigation