Skip to main content
Log in

Navigating the complexities of the crypto-market: an innovative approach with generalized Dombi aggregation operators in cubic Pythagorean fuzzy environment

  • Soft computing in decision making and in modeling in economics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Precision is a crucial aspect of the decision-making (DM) process, and several techniques and systems have been developed to address the inherent vagueness and uncertainty that accompanies it. In recent years, the use of Cubic Pythagorean fuzzy (CPF) sets has gained significant attention due to their ability to capture more information in managing informational uncertainty. Additionally, the Dombi operator has been recognized for its high degree of versatility in dealing with imprecise decision-making environments. Building upon the advantages of CPF sets and the flexibility of Dombi t-norm and t-conorm, this article introduces novel aggregation operators, including the CPF Dombi-weighted averaging, and CPF Dombi-weighted geometric operators. These newly developed operators possess desirable features such as idempotency, commutativity, reducibility, monotonicity, and boundedness, which enhance their applicability in handling multi-criteria decision-making problems. To exhibit the efficiency of our proposed framework, we present a practical model involving the choice of a more stable cryptocurrency in the crypto-market. The results showcase the applicability and practicality of the proposed approach in addressing imprecision and uncertainty in real-world DM scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abbas SZ, Ali Khan MS, Abdullah S, Sun H, Hussain F (2019) Cubic Pythagorean fuzzy sets and their application to multi-attribute decision making with unknown weight information. J Intell Fuzzy Syst 37(1):1529–1544

    Google Scholar 

  • Adalı EA, Tuş A (2021) Hospital site selection with distance-based multi-criteria decision-making methods. Int J Healthcare Manag 14(2):534–544

    Google Scholar 

  • Aruldoss M, Lakshmi TM, Venkatesan VP (2013) A survey on multi criteria decision making methods and its applications. Am J Inf Syst 1(1):31–43

    Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:1

    MATH  Google Scholar 

  • Dombi J (1982) A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst 8(2):149–163

    MathSciNet  MATH  Google Scholar 

  • Ejegwa P, Jana C (2021) Some new weighted correlation coefficients between Pythagorean fuzzy sets and their applications. Pythagorean Fuzzy Sets Theory Appl 1(39–64):2021

    Google Scholar 

  • Grattan-Guinness I (1997) A first course in fuzzy logic, by Hung T. Nguyen and Elbert A. Walker. Pp. 266. $69.95. 1997 [received 1996].(CRC, Boca Raton). Math Gazette 81(491):328–329

  • Garg H (2016) A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J Intell Fuzzy Syst 31(1):529–540

    MATH  Google Scholar 

  • Gou X, Xu Z, Ren P (2016) The properties of continuous Pythagorean fuzzy information. Int J Intell Syst 31(5):401–424

    Google Scholar 

  • Gou X, Xu Z, Liao H (2017) Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Inf Sci 388:225–246

    Google Scholar 

  • Gou X, Xu Z, Liao H, Herrera F (2021) Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare. J Oper Res Soc 72(12):2611–2630

    Google Scholar 

  • Hamid MT, Riaz M, Naeem K (2022) A study on weighted aggregation operators for q-rung orthopair m-polar fuzzy set with utility to multistage decision analysis. Int J Intell Syst 37(9):6354–6387

    Google Scholar 

  • He X (2018) Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators. Nat Hazards 90(3):1153–1175

    MathSciNet  Google Scholar 

  • Jamwal A, Agrawal R, Sharma M, Kumar V (2021) Review on multi-criteria decision analysis in sustainable manufacturing decision making. Int J Sustain Eng 14(3):202–225

    Google Scholar 

  • Jana C, Senapati T, Pal M, Yager RR (2019a) Picture fuzzy Dombi aggregation operators: application to MADM process. Appl Soft Comput 74:99–109

    Google Scholar 

  • Jana C, Pal M, Wang J-Q (2019b) Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process. J Ambient Intell Humaniz Comput 10(9):3533–3549

    Google Scholar 

  • Jun YB, Kim CS, Yang KO (2012) Cubic sets. Ann Fuzzy Math Inform 4(1):83–98

    MathSciNet  MATH  Google Scholar 

  • Kaur G, Garg H (2018) Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1):65

    MathSciNet  Google Scholar 

  • Kaur G, Garg H (2019) Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process. Arab J Sci Eng 44(3):2775–2794

    Google Scholar 

  • Khan F, Khan MSA, Shahzad M, Abdullah S (2019a) Pythagorean cubic fuzzy aggregation operators and their application to multi-criteria decision making problems. J Intell Fuzzy Syst 36(1):595–607

    Google Scholar 

  • Khan F, Abdullah S, Mahmood T, Shakeel M, Rahim M (2019b) Pythagorean cubic fuzzy aggregation information based on confidence levels and its application to multi-criteria decision making process. J Intell Fuzzy Syst 36(6):5669–5683

    Google Scholar 

  • Khan AA, Ashraf S, Abdullah S, Qiyas M, Luo J, Khan SU (2019c) Pythagorean fuzzy Dombi aggregation operators and their application in decision support system. Symmetry 11(3):383

    MATH  Google Scholar 

  • Klement EP, Mesiar R (2005) Logical, algebraic, analytic and probabilistic aspects of triangular norms. Elsevier

  • Liang W, Zhang X, Liu M (2015) The maximizing deviation method based on interval-valued Pythagorean fuzzy weighted aggregating operator for multiple criteria group decision analysis. Discret Dyn Nat Soc 2015:1

    MathSciNet  MATH  Google Scholar 

  • Lu X, Ye J (2018) Dombi aggregation operators of linguistic cubic variables for multiple attribute decision making. Information 9(8):188

    Google Scholar 

  • Mahmood T, Mehmood F, Khan Q (2016) Cubic hesitant fuzzy sets and their applications to multi criteria decision making. Int J Algebra Stat 5(1):19–51

    Google Scholar 

  • Muhammad L, Badi I, Haruna AA, Mohammed I (2021) Selecting the best municipal solid waste management techniques in Nigeria using multi criteria decision making techniques. Rep Mech Eng 2(1):180–189

    Google Scholar 

  • Peng X, Yang Y (2016a) Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making. Int J Intell Syst 31(10):989–1020

    MathSciNet  Google Scholar 

  • Peng X, Yang Y (2016b) Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int J Intell Syst 31(5):444–487

    Google Scholar 

  • Rahman K, Abdullah S, Shakeel M, Ali Khan MS, Ullah M (2017) Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Math 4(1):1338638

    MathSciNet  MATH  Google Scholar 

  • Ren P, Xu Z, Gou X (2016) Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput 42:246–259

    Google Scholar 

  • Riaz M, Naeem K, Afzal D (2020) A similarity measure under pythagorean fuzzy soft environment with applications. Comput Appl Math 39(4):269

    MathSciNet  MATH  Google Scholar 

  • Sánchez-Garrido AJ, Navarro IJ, Yepes V (2022) Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. J Clean Prod 330:129724

    Google Scholar 

  • Seikh MR, Mandal U (2021) Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making. Granul Comput 6(3):473–488

    Google Scholar 

  • Shi L, Ye J (2018) Dombi aggregation operators of neutrosophic cubic sets for multiple attribute decision-making. Algorithms 11:29

    Google Scholar 

  • Thao NX (2020) A new correlation coefficient of the Pythagorean fuzzy sets and its applications. Soft Comput 24(13):9467–9478

    MATH  Google Scholar 

  • Triantaphyllou E (2000) Multi-criteria decision making methods. In: Multi-criteria decision making methods: a comparative study. Springer, pp 5–21

  • Wang Z, Xiao F, Cao Z (2022) Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making. Soft Comput 26(19):9937–9952

    Google Scholar 

  • Wu L, Wei G, Wu J, Wei C (2020) Some interval-valued intuitionistic fuzzy dombi heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas. Int J Environ Res Public Health 17(3):829

    Google Scholar 

  • Xiao F, Ding W (2019) Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl Soft Comput 79:254–267

    Google Scholar 

  • Xu W, Shang X, Wang J (2021) Multiple attribute group decision-making based on cubic linguistic Pythagorean fuzzy sets and power Hamy mean. Complex Intell Syst 7(3):1673–1693

    Google Scholar 

  • Yager RR (2013a) Pythagorean fuzzy subsets. In: 2013a joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 57–61

  • Yager RR (2013b) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965

    Google Scholar 

  • Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 28(5):436–452

    Google Scholar 

  • Youssef MI, Webster B (2022) A multi-criteria decision making approach to the new product development process in industry. Rep Mech Eng 3(1):83–93

    Google Scholar 

  • Zadeh LA (1965) Information and control. Fuzzy Sets 8(3):338–353

    Google Scholar 

  • Zhang X (2016a) A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int J Intell Syst 31(6):593–611

    Google Scholar 

  • Zhang X (2016b) Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf Sci 330:104–124

    Google Scholar 

  • Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 29(12):1061–1078

    MathSciNet  Google Scholar 

  • Zhang R, Xu Z, Gou X (2023) ELECTRE II method based on the cosine similarity to evaluate the performance of financial logistics enterprises under double hierarchy hesitant fuzzy linguistic environment. Fuzzy Optim Decis Making 22(1):23–49

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

In this study, M.R. prepared the initial draft of the manuscript, under the supervision of F.A., M.A. helps us to revise and review the manuscript. Authors read and approved the final manuscript.

Corresponding author

Correspondence to Fazli Amin.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

To prove Eq. (18), we used the principle of mathematical induction.

Step 1. For \(n=2\), we have.

$${\varphi }_{1}.{\beta }_{1}=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right),$$
$${\varphi }_{2}.{\beta }_{2}=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right),$$
$$\mathrm{CPFDWA}({\beta }_{1},{\beta }_{2})={\varphi }_{k}{\beta }_{k}\oplus{\varphi }_{k}{\beta }_{k}$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$\oplus\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+\sum_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$

which is true for \(n=2\).

Step 2. Suppose that Eq. (18) is true for \(n=l\) then,

$$CPFDWA\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{l}\right)=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+\sum_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$

Step 3. In this step, we will prove that Eq. (18) is true for \(n=l+1\).

By Eq. (17), we have

$$CPFDWA\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{l+1}\right)=\sum_{k=1}^{l}{\varphi }_{k}{\beta }_{k}+{\varphi }_{l+1}{\beta }_{l+1}$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+\sum_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$\oplus\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+\sum_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right).$$

As a result, Eq. (18) is true for \(n=l+1\), and thus, it is satisfied for all \(n\). Therefore,

$$\mathrm{CPFDWA}\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{n}\right)=\left(\begin{array}{l}\left(\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+\sum_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right),$$

which completed the proof.

Appendix B

To prove Eq. (22), we used the principle of mathematical induction,

Step 1. For \(n=2\), according to Definition 22, we can obtain.

$${\beta }_{1}^{{\varphi }_{1}}=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right),$$
$${\beta }_{2}^{{\varphi }_{2}}=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right),$$
$$\mathrm{CPFDWA}({\beta }_{1},{\beta }_{2})={\beta }_{1}^{{\varphi }_{1}}\otimes {\beta }_{1}^{{\varphi }_{1}}=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$\otimes \left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\frac{1}{\sqrt{1+{\left\{{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{L}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}^{U}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }+{\varphi }_{2}{\left(\frac{1}{{\left({\upsilon }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+{\left\{{{\varphi }_{1}\left(\frac{1}{{\left({\vartheta }_{{R}_{1}}\right)}^{2}}-1\right)}^{2\eta }+{{\varphi }_{2}\left(\frac{1}{{\left({\vartheta }_{{R}_{2}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{2}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+\sum_{k=1}^{2}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$

which is true for \(n=2\).

Step 2. Suppose that Eq. (22) is true for \(n=l\) then,

$$CPFDWA\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{l}\right)=\left(\begin{array}{l}\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\\ \left(\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+\sum_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$

Step 3. In this step, we will prove that Eq. (22) is true for all \(n=l+1\).

By Eq. (17), we have

$$CPFDWG\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{l+1}\right)=\sum_{k=1}^{l}{\varphi }_{k}{\beta }_{k}\otimes {\varphi }_{l+1}{\beta }_{l+1}$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+\sum_{k=1}^{l}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$\otimes \left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\left\{{\varphi }_{l+1}{\left(\frac{1}{{\left({\upsilon }_{{R}_{l+1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+{\left\{{{\varphi }_{l+1}\left(\frac{1}{{\left({\vartheta }_{{R}_{l+1}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right)$$
$$=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{l+1}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+\sum_{k=1}^{l+1}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right).$$

As a result, Eq. (22) is true for \(n=l+1\), and thus, it satisfies for all \(n\). Therefore,

$$CPFDWA\left({\beta }_{1},{\beta }_{2},\dots ,{\beta }_{n}\right)=\left(\begin{array}{l}\left(\left[\begin{array}{l}\frac{1}{\sqrt{1+{\sum }_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \frac{1}{\sqrt{1+{\sum }_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right],\left[\begin{array}{l}\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{L}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\\ \sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}^{U}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\end{array}\right]\right),\\ \left(\sqrt{1-\frac{1}{1+{\sum }_{k=1}^{n}{\left\{{\varphi }_{k}{\left(\frac{1}{{\left({\upsilon }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}},\frac{1}{\sqrt{1+\sum_{k=1}^{n}{\left\{{{\varphi }_{k}\left(\frac{1}{{\left({\vartheta }_{{R}_{k}}\right)}^{2}}-1\right)}^{2\eta }\right\}}^{\frac{1}{\eta }}}}\right)\end{array}\right).$$

which completed the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, M., Amin, F. & Albaity, M. Navigating the complexities of the crypto-market: an innovative approach with generalized Dombi aggregation operators in cubic Pythagorean fuzzy environment. Soft Comput 27, 17121–17152 (2023). https://doi.org/10.1007/s00500-023-08875-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08875-6

Keywords

Navigation