Skip to main content
Log in

Polynomial goal programming and particle swarm optimization for enhanced indexation

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Enhanced indexation is an investment strategy that aims to generate moderate and consistent excess returns with respect to a tracked benchmark index. In this work, we introduce an optimization approach where the risk of under-performing the benchmark is separated from the potential over-performance, and the Sharpe ratio measures the profitability of the active management. In addition, a cardinality constraint controls the number of active positions in the portfolio, while a turnover threshold limits the transaction costs. We adopt a polynomial goal programming approach to combine these objectives with the investor’s preferences. An improved version of the particle swarm optimization algorithm with a novel constraint-handling mechanism is proposed to solve the optimization problem. A numerical example, where the Euro Stoxx 50 Index is used as the benchmark, shows that our method consistently produces larger returns, with reduced costs and risk exposition, than the standard indexing strategies over a 10-year backtesting period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For maximization problems, it suffices to replace > with < in (24) and (25).

References

  • Affolter K, Hanne T, Schweizer D, Dornberger R (2016) Invasive weed optimization for solving index tracking problems. Soft Comput 20(9):3393–3401

    Google Scholar 

  • Beasley JE, Meade N, Chang TJ (2003) An evolutionary heuristic for the index tracking problem. Eur J Oper Res 148(3):621–643

    MathSciNet  MATH  Google Scholar 

  • Benidis K, Feng Y, Palomar DP, et al (2018) Optimization methods for financial index tracking: From theory to practice. Found Trends® Optim 3(3):171–279

  • Beraldi P, Violi A, Ferrara M, Ciancio C, Pansera BA (2019) Dealing with complex transaction costs in portfolio management. Ann Oper Res 1–16. https://doi.org/10.1007/s10479-019-03210-5

  • Biglova A, Ortobelli S, Rachev ST, Stoyanov S (2004) Different approaches to risk estimation in portfolio theory. J Portf Manag 31(1):103–112

    Google Scholar 

  • Bruni R, Cesarone F, Scozzari A, Tardella F (2015) A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectr 37(3):735–759

    MathSciNet  MATH  Google Scholar 

  • Canakgoz NA, Beasley JE (2009) Mixed-integer programming approaches for index tracking and enhanced indexation. Eur J Oper Res 196(1):384–399

    MathSciNet  MATH  Google Scholar 

  • Caporin M, Jannin GM, Lisi F, Maillet BB (2014) A survey on the four families of performance measures. J Econ Surv 28(5):917–942

    Google Scholar 

  • Chowdhury S, Tong W, Messac A, Zhang J (2013) A mixed-discrete particle swarm optimization algorithm with explicit diversity-preservation. Struct Multidiscip Optim 47(3):367–388

    MathSciNet  MATH  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evolut Comput 8(3):256–279

    Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338

    MATH  Google Scholar 

  • Deckro RF, Hebert JE (1988) Invasive weed optimization for solving index tracking problems. J Oper Manag 7(3–4):149–164

    Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Google Scholar 

  • di Tollo G, Stützle T, Birattari M (2014) A metaheuristic multi-criteria optimisation approach to portfolio selection. J Appl Oper Res 6(4):222–242

    Google Scholar 

  • Díaz J, Cortés M, Hernández J, Clavijo Ó, Ardila C, Cabrales S (2019) Index fund optimization using a hybrid model: genetic algorithm and mixed-integer nonlinear programming. Eng Econom 64(3):298–309

    Google Scholar 

  • DiBartolomeo D (2000) The enhanced index fund as an alternative to indexed equity management. Northfield Information Services, Boston

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995 (MHS’95), pp 39–43. IEEE

  • Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 1. IEEE, pp 81–86

  • Filippi C, Guastaroba G, Speranza M (2016) A heuristic framework for the bi-objective enhanced index tracking problem. Omega 65:122–137

    Google Scholar 

  • Franks EC (1992) Targeting excess-of-benchmark returns. J Portf Manag 18(4):6–12

    Google Scholar 

  • Gnägi M, Strub O (2018) Tracking and outperforming large stock-market indices. Omega. https://doi.org/10.1016/j.omega.2018.11.008

  • Guastaroba G, Speranza MG (2012) Kernel search: an application to the index tracking problem. Eur J Oper Res 217(1):54–68

    MathSciNet  MATH  Google Scholar 

  • Guastaroba G, Mansini R, Ogryczak W, Speranza MG (2016) Linear programming models based on omega ratio for the enhanced index tracking problem. Eur J Oper Res 251(3):938–956

    MathSciNet  MATH  Google Scholar 

  • Huang H, Lv L, Ye S, Hao Z (2019) Particle swarm optimization with convergence speed controller for large-scale numerical optimization. Soft Comput 23:4421–4437

    Google Scholar 

  • Israelsen CL et al (2005) A refinement to the sharpe ratio and information ratio. J Asset Manag 5(6):423–427

    Google Scholar 

  • Jorion P (2003) Portfolio optimization with tracking-error constraints. Financ Anal J 59(5):70–82

    Google Scholar 

  • Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55(1):165–188

    MathSciNet  MATH  Google Scholar 

  • Krink T, Mittnik S, Paterlini S (2009) Differential evolution and combinatorial search for constrained index-tracking. Ann Oper Res 172(1):153

    MathSciNet  MATH  Google Scholar 

  • Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Finance 10(5):603–621

    Google Scholar 

  • Li Q, Sun L, Bao L (2011) Enhanced index tracking based on multi-objective immune algorithm. Expert Syst Appl 38(5):6101–6106

    Google Scholar 

  • Maringer D, Oyewumi O (2007) Index tracking with constrained portfolios. Intell Syst Account Finance Manag Int J 15(1–2):57–71

    Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  • Meghwani SS, Thakur M (2017) Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm Evolut Comput 37:104–125

    Google Scholar 

  • Mezali H, Beasley J (2014) Index tracking with fixed and variable transaction costs. Optim Lett 8(1):61–80

    MathSciNet  MATH  Google Scholar 

  • Proelss J, Schweizer D (2014) Polynomial goal programming and the implicit higher moment preferences of us institutional investors in hedge funds. Financ Mark Portf Manag 28(1):1–28

    Google Scholar 

  • Pulido GT, Coello CAC (2004) A constraint-handling mechanism for particle swarm optimization. In: IEEE congress on evolutionary computation vol 2, pp 1396–1403

  • Roll R (1992) A mean/variance analysis of tracking error. J Portf Manag 18(4):13–22

    Google Scholar 

  • Sharma A, Agrawal S, Mehra A (2017) Enhanced indexing for risk averse investors using relaxed second order stochastic dominance. Optim Eng 18(2):407–442

    MathSciNet  MATH  Google Scholar 

  • Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138

    Google Scholar 

  • Sharpe WF, Alexander GJ, Bailey JV (1995) Investments. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE World congress on computational intelligence, The 1998 IEEE international conference on evolutionary computation proceedings. IEEE, pp 69–73

  • Strub O, Baumann P (2018) Optimal construction and rebalancing of index-tracking portfolios. Eur J Oper Res 264(1):370–387

    MathSciNet  MATH  Google Scholar 

  • Takeda A, Niranjan M, Jy Gotoh, Kawahara Y (2013) Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios. Comput Manag Sci 10(1):21–49

    MathSciNet  MATH  Google Scholar 

  • Thomaidis NS (2010) Active portfolio management from a fuzzy multi-objective programming perspective. In: Brabazon A, O’Neill M, Maringer D (eds) European conference on the applications of evolutionary computation. Studies in Computational Intelligence, vol 380. Springer, Berlin, Heidelberg

  • Thomaidis NS (2011) A soft computing approach to enhanced indexation. In: Brabazon A, O’Neill M, Maringer D (eds) Natural computing in computational finance. Studies in computational intelligence, vol 380. Springer, Berlin, Heidelberg, pp 61–77

  • Vassiliadis V, Thomaidis N, Dounias G (2009) Active portfolio management under a downside risk framework: comparison of a hybrid nature–inspired scheme. In: International conference on hybrid artificial intelligence systems. Springer, pp 702–712

  • Wang H, Sun H, Li C, Rahnamayan S, Pan JS (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135

    MathSciNet  Google Scholar 

  • Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408

    Google Scholar 

  • Wu LC, Chou SC, Yang CC, Ong CS (2007) Enhanced index investing based on goal programming. J Portf Manag 33(3):49–56

    Google Scholar 

  • Wurgler J (2010) On the economic consequences of index-linked investing. Technical report, National Bureau of Economic Research

  • Xu F, Wang M, Dai YH, Xu D (2018) A sparse enhanced indexation model with chance and cardinality constraints. J Glob Optim 70(1):5–25

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Maringer D (2010) Index mutual fund replication. In: Brabazon A, O’Neill M, Maringer DG (eds) Natural computing in computational finance. Studies in Computational Intelligence, vol 293. Springer, Berlin, Heidelberg

  • Zhao Z, Xu F, Wang M, Zhang CY (2019) A sparse enhanced indexation model with norm and its alternating quadratic penalty method. J Oper Res Soc 70(3):433–445

    Google Scholar 

  • Zhu H, Chen Y, Wang K (2010) A particle swarm optimization heuristic for the index tacking problem. In: Zhang L, Lu BL, Kwok J (eds) Advances in Neural Networks - ISNN 2010. Lecture Notes in Computer Science, vol 6063. Springer, Berlin, Heidelberg

Download references

Acknowledgements

We thank two anonymous reviewers for their insightful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Kaucic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Squillante.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the position of Generali Italia. All errors are the only responsibility of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaucic, M., Barbini, F. & Camerota Verdù, F.J. Polynomial goal programming and particle swarm optimization for enhanced indexation. Soft Comput 24, 8535–8551 (2020). https://doi.org/10.1007/s00500-019-04378-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04378-5

Keywords

Navigation