Skip to main content
Log in

Simulated annealing based GRASP for Pareto-optimal dissimilar paths problem

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper investigates a meta-heuristic (MH) for the Pareto-optimal dissimilar path problem (DPP) (PDPP) whose solution is a set composed of at least two different paths. The objective vector of a PDPP includes some conflicting objectives: on the one hand, the average path measures such as the length and risk of paths in a solution must be kept low and, on the other hand, the dissimilarity among these paths should be kept high. The dissimilarity of the DPP is a measure of a paths set with cardinality no less than two. However, just one path can be extracted from a chromosome in the existing MHs for various path problems. This results in a great difficulty to evaluate the chromosome in the existing MHs when we apply them to solve DPP and, consequently, there exists no MH for solving the DPP so far. In this paper, a new decoding approach of a chromosome is first explored and, with this approach, a set of paths can be extracted from a chromosome. By combining the simulated annealing (SA), in which the new decoding approach is adopted, with the well-known greedy randomized adaptive search procedure (GRASP), a SA-based GRASP for the PDPP is proposed. The proposed algorithm is compared against a most recent heuristic, whose performance is better than all of the early approaches, for the PDPP and the experimental results show that the proposed algorithm is able to quickly create superior approximation of the efficient set of the PDPP than the existing solution approaches for the PDPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/

  2. ftp://dimacs.rutgers.edu/pub/netflow/generators/network/netgen

References

  • Ahn CW, Ramakrishna R (2002) A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans Evol Comput 6:566–579

    Article  Google Scholar 

  • Akgun V, Erkut E, Batta R (2000) On finding dissimilar paths. Eur J Oper Res 121:232–246

    Article  MATH  Google Scholar 

  • Baker JE (1985) Adaptive selection methods for genetic algorithm. In: Proceedings of 1st international conference on genetic algorithms. Lawrence Erlbaum Associates Inc, Hillsdale, NJ, pp 101–111

  • Batta R, Chiu SS (1988) Optimal obnoxious paths on a network: transportation of hazardous materials. Oper Res 36:84–92

    Article  Google Scholar 

  • Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput Int J 8(2):239–287

    Article  MathSciNet  MATH  Google Scholar 

  • Carotenuto P, Giordani S, Ricciardelli S (2007) Finding minimum and equitable risk routes for hazmat shipments. Comput Oper Res 34:1304–1327

    Article  MATH  Google Scholar 

  • Climaco JNC, Martins EQV (1982) A bicriterion shortest path algorithm. Eur J Oper Res 11:399–404

    Article  MathSciNet  MATH  Google Scholar 

  • Coello Coello CA, Veldhuizen DAV, Lamont GB (2002) Evolutionary algorithms for solving multi-objectives problems. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  • Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Dell’Olmo P, Gentili M, Scozzari A (2005) Heuristics for dissimilar Pareto-optimal paths. Eur J Oper Res 162:70–82

    Article  MATH  Google Scholar 

  • Duarte A, Marti R (2007) Tabu search and GRASP for the maximum diversity problem. Eu J Oper Res 178:71–84

    Article  MathSciNet  MATH  Google Scholar 

  • Eglese RW (1990) Simulated annealing: a tool for operational research. Eur J Oper Res 46:271–281

    Article  MathSciNet  MATH  Google Scholar 

  • Erkut E (1990) The discrete \(p\)-dispersion problem. Eur J Oper Res 46:48–60

    Article  MathSciNet  MATH  Google Scholar 

  • Erkut E, Verter V (1998) Modeling of transport risk for hazardous materials. Oper Res 46:625–642

    Article  MATH  Google Scholar 

  • Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71

    Article  MathSciNet  MATH  Google Scholar 

  • Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Global Optim 6:109–33

    Article  MathSciNet  MATH  Google Scholar 

  • Fonseca C, Fleming PJ (1993) Genetic algorithm for multiobjective optimization: formulation, discussion and generalization. In: Forrest S (ed) Proceedings of 5th international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 17–22

  • Fonseca C, Fleming PJ (1996) An overview of evolutionary algorithms in multiobjective optimzation. Evol Comput 3:1–16

    Article  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  • Gen M, Cheng R (2000) Genetic algorithms & engineering optimization. Wiley, New York

    Google Scholar 

  • Ghosh JB (1996) Computational aspects of the maximum diversity problem. Oper Res Lett 19:175–181

  • Goldberg D (1989) Genetic algorithm in search. Optimization and machine learning. Addison-Wesley, MA

    MATH  Google Scholar 

  • Jensen PA, Barnes JW (1980) Network flow programming. Wiley, New York

    MATH  Google Scholar 

  • Johnson PE, Joy DS, Clarke DB (1992) An enhancement routing model: program, description, methodology and revised user’s manual. Technical report, Oak Ridge National Laboratories

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–679

    Article  MathSciNet  MATH  Google Scholar 

  • Klingman D, Napier A, Stutz J (1974) A program for generating large scale capacitated assignment, transportation, and minimum-cost flow network problems. Manag Sci 20:814–820

    Article  MATH  Google Scholar 

  • Kuby M, Xu Z, Xie X (1997) A minimax method for finding the \(k\) best differentiated paths. Geogr Anal 29:298–313

    Article  Google Scholar 

  • Lepofsky M, Abkowitz M, Cheng P (1993) Transportation hazard analysis in integrated GIS environment. Transp Eng 119:239–254

    Article  Google Scholar 

  • List GF, Mirchandani PB, Turnquist MA, Zografos KG (1991) Modeling and analysis for hazardous materials transportation: risk analysis, routing/scheduling and facility location. Transp Sci 25:100–114

    Article  Google Scholar 

  • Liu L, Mu H (2012) An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems. Appl Soft Comput 12:506–515

    Article  Google Scholar 

  • Liu L, Mu H (2014) A simulated annealing for multi-criteria optimization problem: DBMOSA. Swarm Evol Comput 14:48–65

    Article  Google Scholar 

  • Liu L, Mu H, Luo H, Li X (2012) A simulated annealing for multi-criteria network path problems. Comput Oper Res 39:3119–3135

    Article  MathSciNet  MATH  Google Scholar 

  • Lombard K, Church RL (1993) The gateway shortest path problem: generation of alternative routes for a corridor location problem. Geogr Syst 1:25–45

    Google Scholar 

  • Marti R, Velarde JLG, Duartec A (2009) Heuristics for the bi-objective path dissimilarity problem. Comput Oper Res 36:2905–2912

    Article  MATH  Google Scholar 

  • Martins EQV (1984) On a multicriteria shortest path problem. Eur J Oper Res 16:236–245

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamed C, Bassem J, Taicir L (2010) A genetic algorithms to solve the bicriteria shortest path problem. Electron Notes Discret Math 36:851–858

    Article  MATH  Google Scholar 

  • Nozick LK, List GF, Turquist MA (1997) Integrated routing and scheduling in hazardous materials transportation. Transp Sci 31:200–215

    Article  MATH  Google Scholar 

  • Pareto V (1897) Cours d’Économie Politique, Professé à L’Université de Lausanne, vol 2. Pichon, Libraire, Paris (in French)

  • ReVelle DJ, Cohon C, Shobrys J (1991) Simultaneous siting and routing in the disposal of hazardous wastes. Transp Sci 25:138–145

    Article  Google Scholar 

  • Srinivas N, Deb K (1995) Multiobjective optimization in genetic algorithms. Evol Comput 2:221–248

    Article  Google Scholar 

  • Szidarovsky F, Gershon ME, Dukstein L (1986) Techniques for multiobjective decision making in systems management. Elsevier, New York

    Google Scholar 

  • Thyagarajan K, Batta R, Karwan MH, Szczerba RJ (2005) Planning dissimilar paths for military units. Mil Oper Res 10:25–42

    Article  Google Scholar 

  • Wijeratne AB, Turnquist MA, Mirchandani PB (1993) Multiobjective routing of hazardous materials in stochastic networks. Eur J Oper Res 65:33–43 http://dx.doi.org/10.1016/0377-2217(93)90142-A

  • Zhang J, Hodgson J, Erkut E (2000) Using GIS to assess the risk of hazardous materials transport in networks. Eur J Oper Res 121:316–329

    Article  MATH  Google Scholar 

  • Zitzler E (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8:173–195

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Nos. 71361018, 61563029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Mu, H. & Yang, J. Simulated annealing based GRASP for Pareto-optimal dissimilar paths problem. Soft Comput 21, 5457–5473 (2017). https://doi.org/10.1007/s00500-016-2137-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2137-7

Keywords

Navigation