Skip to main content
Log in

On the solution of the fuzzy Sylvester matrix equation

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the fuzzy Sylvester matrix equation \(AX+XB=C,\) where \(A\in {\mathbb{R}}^{n \times n}\) and \(B\in {\mathbb{R}}^{m \times m}\) are crisp M-matrices, C is an \(n\times m\) fuzzy matrix and X is unknown. We first transform this system to an \((mn)\times (mn)\) fuzzy system of linear equations. Then, we investigate the existence and uniqueness of a fuzzy solution to this system. We use the accelerated over-relaxation method to compute an approximate solution to this system. Some numerical experiments are given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allahviranloo T (2004) Numerical methods for fuzzy system of linear equations. Appl Math Comput 155:493–502

    Article  MATH  MathSciNet  Google Scholar 

  • Allahviranloo T (2005) Successive overrelaxation iterative method for fuzzy system of linear equations. Appl Math Comput 162:189–196

    Article  MATH  MathSciNet  Google Scholar 

  • Axelsson O (1996) Iterative solution methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bartels RH, Stewart GW (1994) Algorithm 432: Solution of the matrix equation AX + XB = C. Circ Syst Signal Process 13:820–826

    Google Scholar 

  • Benner P (2004) Factorized solution of Sylvester equations with applications in control. In: Proceedings of international symposium of mathematics. Theory networks and systems, MTNS 2004

  • Benner P (2008) Large-scale matrix equations of special type. Numer Linear Algebra Appl 15:747–754

    Article  MathSciNet  Google Scholar 

  • Datta BN, Datta K (1986) Theoretical and computational aspects of some linear algebra problems in control theory. In: Byrnes CI, Lindquist A (eds) Computational and combinatorial methods in systems theory. Elsevier, Amsterdam, pp 201–212

    Google Scholar 

  • Dehghan M, Hashemi B (2006) Iterative solution of fuzzy linear systems. Appl Math Comput 175:645–674

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman M, Ming M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MATH  MathSciNet  Google Scholar 

  • Golub GH, Nash S, Van Loan CF (1979) A Hessenberg–Schur method for the problem AX + XB = C. IEEE Trans Automat Control 24:909–913

    Article  MATH  MathSciNet  Google Scholar 

  • Guennouni AE, Jbilou K, Riquet AJ (2002) Block Krylov subspace methods for solving large Sylvester equations. Numer Algorithms 29:75–96

    Article  MATH  MathSciNet  Google Scholar 

  • Hadjidimos A (1978) Accelerated overrelaxation method. Math Comput 32(141):149–157

    Article  MATH  MathSciNet  Google Scholar 

  • Hashemi MS, Mirnia MK, Shahmorad S (2008) Solving fuzzy linear systems by using the Schur complement when coefficient matrix is an M-matrix. Iranian J Fuzzy Syst 5:15–29

    MATH  MathSciNet  Google Scholar 

  • Hyland C, Bernstein D (1984) The optimal projection equations for fixed-order dynamic compensation. IEEE Trans Automat Control 29:1034–1037

    Article  MATH  MathSciNet  Google Scholar 

  • Jbilou K, Messaoudi A, Sadok H (1999) Global FOM and GMRES algorithms for matrix equations. Appl Numer Math 31:49–63

    Article  MATH  MathSciNet  Google Scholar 

  • Jbilou K (2006) Low rank approximate solutions to large Sylvester matrix equations. Appl Math Comput 177:365–376

    Article  MATH  MathSciNet  Google Scholar 

  • Laub AJ (2005) Matrix analysis for scientists and engineers. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Laub AJ, Heath MT, Paige C, Ward RC (1987) Computation of system balancing transformations and other applications of simultaneous diagonalisation algorithms. IEEE Trans Automat Control 32:115–122

    Article  MATH  Google Scholar 

  • Saad Y (1995) Iterative methods for sparse linear systems. PWS Press, New York

    Google Scholar 

  • Simoncini V (1996) On the numerical solution of AX − XB = C. BIT 36:814–830

    Article  MATH  MathSciNet  Google Scholar 

  • Varga RS (2000) Matrix Iterative analysis. Springer, Berlin

  • Wang K, Zheng B (2007) Block iterative methods for fuzzy linear systems. J Appl Math Comput 25:119–136

    Article  MATH  MathSciNet  Google Scholar 

  • Wu M, Wang L, Song YZ (2007) Preconditioned AOR iterative method for linear systems. Appl Numer Math 57:672–682

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referee and editor Dr. Brunella Gerla for their insightful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davod Khojasteh Salkuyeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salkuyeh, D.K. On the solution of the fuzzy Sylvester matrix equation. Soft Comput 15, 953–961 (2011). https://doi.org/10.1007/s00500-010-0637-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0637-4

Keywords

Navigation