Skip to main content
Log in

On the numerical solution ofAXXB =C

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this note we analyze the numerical solution ofAXXB =C when a Galerkin method is applied, assuming thatB has much smaller size thanA. We show that the corresponding Galerkin equation can be obtained from the truncation of the original problem, if matrix polynomials are used for writing the analytical solutionX. Moreover, we provide some relations between the separation ofA andB in their natural space and that in the projected space. Experimental tests validate some of the theoretical results and show the rate of applicability of the method with respect to a standard linear system solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Bartels and G. W. Stewart,Algorithm 432: Solution of the matrix equation AX + XB = C, Comm. ACM, 15 (1972), pp. 820–826.

    Google Scholar 

  2. D. L. Boley,Krylov space methods on state-space control models, Circ. Syst. & Signal Proc., 13 (1994), pp. 733–758.

    Google Scholar 

  3. F. Chatelin,Valeurs Propres de Matrices, Masson, Paris, 1988.

    Google Scholar 

  4. J. Demmel,Computing stable eigendecomposition of matrices, Linear Algebra Appl., 79 (1986), pp. 163–193.

    Google Scholar 

  5. E. de Souza and S. P. Bhattacharyya,Controllability, observability and the solution of AX − XB = C, Linear Algebra Appl., 39 (1981), pp. 167–188.

    Google Scholar 

  6. R. W. Freund,A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.

    Google Scholar 

  7. I. Gohberg, L. Rodman, and P. Lancaster,Matrix Polynomials, Academic Press, New York, 1982.

    Google Scholar 

  8. G. H. Golub, S. Nash, and C. Van Loan,A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Autom. Contr., AC-24 (1979), pp. 909–913.

    Google Scholar 

  9. R. E. Hartwig,Resultants and the solution of AX − XB = −C, SIAM J. Appl. Math., 23 (1972), pp. 104–117.

    Google Scholar 

  10. J. Z. Hearon,Nonsingular solutions of TA − BT = C, Linear Algebra Appl., 16 (1977), pp. 57–63.

    Google Scholar 

  11. N. J. Higham,Perturbation theory and backward error for AX − XB = C, BIT, 33 (1993), pp. 124–136.

    Google Scholar 

  12. N. J. Higham,The Test Matrix Toolbox for Matlab, Tech. Report 237, Manchester Centre for Computational Mathematics, University of Manchester, UK, 1993.

    Google Scholar 

  13. M. Hochbruck and G. Starke,Preconditioned Krylov subspace methods for Lyapunov matrix equations, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 156–171.

    Google Scholar 

  14. R. A. Horn and C. R. Johnson,Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  15. D. Y. Hu and L. Reichel,Krylov subspace methods for the Sylvester equation, Linear Algebra Appl., 174 (1992), pp. 283–314.

    Google Scholar 

  16. I. M. Jaimoukha and E. M. Kasenally,Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227–251.

    Google Scholar 

  17. E. C. Ma,A finite series solution of the matrix equation AX − XB = C, J. SIAM Appl. Math, 14 (1966), pp. 490–495.

    Google Scholar 

  18. N. M. Nachtigal, L. Reichel, and L. N. Trefethen,A hybrid GMRES algorithm for nonsymmetric matrix iterations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 796–825.

    Google Scholar 

  19. V. M. Popov,Invariant description of linear, time-invariant controllable systems, SIAM J. Control, 10 (1972), pp. 252–264.

    Google Scholar 

  20. Y. Saad,Numerical solution of large Lyapunov equations, in Signal Processing, Scattering, Operator Theory, and Numerical Methods. Proceedings of the international symposium MTNS-89, vol III, M. A. Kaashoek, J. H. van Schuppen, and A. C. Ran, eds., Boston, 1990, Birkhauser, pp. 503–511.

  21. Y. Saad,Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.

    Google Scholar 

  22. V. Simoncini and M. Sadkane,Arnoldi-Riccati method for large eigenvalue problems, BIT, 36 (1996), pp. 578–593.

    Google Scholar 

  23. R. A. Smith,Matrix calculation for Liapunov quadratic forms, J. Differential Equations, 2 (1966), pp. 208–217.

    Google Scholar 

  24. G. Starke and W. Niethammer,SOR for AX − XB = C, Linear Algebra Appl., 154–156 (1991), pp. 355–375.

    Google Scholar 

  25. J. M. Varah,On the separation of two matrices, Linear Algebra Appl., (1979), pp. 216–222.

  26. H. K. Wimmer,Linear matrix equations, controllability and observability, and the rank of solutions, SIAM J. Matrix Anal., 8 (1988), pp. 570–578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was done while the author was at the Dipartimento di Fisica, Universitá di Bologna, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoncini, V. On the numerical solution ofAXXB =C . Bit Numer Math 36, 814–830 (1996). https://doi.org/10.1007/BF01733793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733793

Key words

Navigation