Skip to main content
Log in

An extension method for fully fuzzy Sylvester matrix equation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

An extension method is proposed to solve a class of fully fuzzy Sylvester matrix equation (FFSME) under some mild assumptions. This method consists of two steps. Firstly, the fully fuzzy system is transferred into a series of interval Sylvester matrix equations through \(\alpha \)-cut. Secondly, these interval systems are extended into crisp systems which is easy to be solved. The solutions of FFSME are not presumed to be triangular-type fuzzy numbers. Moreover, some examples are presented to show the validity of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antoulas AC (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Babbar N, Kumar A, Bansal A (2013) Solving fully fuzzy linear system with arbitrary triangular fuzzy numbers \((m,\alpha, \beta )\). Soft Comput 17(4):691–702

    Article  Google Scholar 

  • Bartels RH, Stewart GW (1972) Solution of the matrix equation AX +XB = C. Commun ACM 15(9):820–826

    Article  Google Scholar 

  • Basaran MA (2012) Calculating fuzzy inverse matrix using fuzzy linear equation system. Appl Soft Comput 12(6):1810–1813

    Article  Google Scholar 

  • Bouhamidi A, Jbilou K (2007) Sylvester Tikhonov-regularization methods in image restoration. J Comput Appl Math 206(1):86–98

    Article  MathSciNet  Google Scholar 

  • Buckley JJ (1990) Fuzzy eigenvalues and input-output analysis. Fuzzy Sets Syst 34(2):187–195

    Article  MathSciNet  Google Scholar 

  • Buckley JJ (1992) Solving fuzzy equations in economics and finance. Fuzzy Sets Syst 48(3):289–296

    Article  MathSciNet  Google Scholar 

  • Buckley JJ, Eslami E, Feuring T (2002) Fuzzy mathematics in economics and engineering. Springer, Berlin

    Book  Google Scholar 

  • Dookhitram K, Lollchund R, Tripathi RK, Bhuruth M (2015) Fully fuzzy Sylvester matrix equation. J Intell Fuzzy Syst 28(5):2199–2211

    MathSciNet  MATH  Google Scholar 

  • Dubois DJ (1980) Fuzzy sets and systems: theory and applications, vol 144. Academic Press, Cambridge

    MATH  Google Scholar 

  • Fernando KV, Nicholson H (1983) On the structure of balanced and other principal representations of SISO systems. IEEE Trans Automat Contr 28(2):228–231

    Article  MathSciNet  Google Scholar 

  • Fortin J, Dubois D, Fargier H (2008) Gradual numbers and their application to fuzzy interval analysis. IEEE Trans Fuzzy Syst 16(2):388–402

    Article  Google Scholar 

  • Friedman M, Ma M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96(2):201–209

    Article  MathSciNet  Google Scholar 

  • Ghanbari R, Mahdavi-Amiri N (2015) Fuzzy LR linear systems: quadratic and least square models to characterize exact solutions and an algorithm to compute approximate solutions. Soft Comput 19(1):205–216

    Article  Google Scholar 

  • Goetschel R Jr, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18(1):31–43

    Article  MathSciNet  Google Scholar 

  • Golub G, Nash S, Van Loan CF (1979) A Hessenberg–Schur method for the problem AX +XB = C. IEEE Trans Automat Control 24(6):909–913

    Article  MathSciNet  Google Scholar 

  • Guo X, Shang D (2013) Approximate solution of LR fuzzy Sylvester matrix equations. J Appl Math 1–10:2013

    MathSciNet  MATH  Google Scholar 

  • Hammarling SJ (1982) Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J Numer Anal 2(3):303–323

  • He Q, Hou L, Zhou J (2017) The solution of fuzzy Sylvester matrix equation. Soft Comput pp 1–9

  • Hyland DC, Bernstein DS (1984) The optimal projection equations for fixed-order dynamic compensation. IEEE Trans Automat Contrib 29(11):1034–1037

    Article  MathSciNet  Google Scholar 

  • Jones A, Kaufmann A, Zimmermann HJ (2012) Fuzzy sets theory and applications, vol 177. Springer, Berlin

    Google Scholar 

  • Kressner D (2008) Block variants of Hammarling’s method for solving Lyapunov equations. ACM Trans Math Softw 34(1):1

    Article  MathSciNet  Google Scholar 

  • Liu HK (2010) On the solution of fully fuzzy linear systems. Int J Comput Math Sci 4(1):29–33

    MathSciNet  Google Scholar 

  • Lu A, Wachspress EL (1991) Solution of Lyapunov equations by alternating direction implicit iteration. Comput Math Appl 21(9):43–58

    Article  MathSciNet  Google Scholar 

  • Peeva K (1992) Fuzzy linear systems. Fuzzy Sets Syst 49(3):339–355

    Article  MathSciNet  Google Scholar 

  • Raich VV, Triphath, RK, Bawa, NPS, Dookhitram, K, Dayal, SK (2011) Application of interval valued fuzzy matrices in medical diagnosis via a new approach. In: 2011 International Conference on Multimedia Technology, pp 3440–3443. IEEE

  • Salkuyeh DK (2011) On the solution of the fuzzy Sylvester matrix equation. Soft Comput 15(5):953–961

    Article  Google Scholar 

  • Simoncini V (2016) Computational methods for linear matrix equations. SIAM Rev 58(3):377–441

    Article  MathSciNet  Google Scholar 

  • Smith RA (1968) Matrix equation \({X}{A} + {B}{X} = {C}\). SIAM J Appl Math 16(1):198–201

  • Sorensen DC, Zhou Y (2003) Direct methods for matrix Sylvester and Lyapunov equations. J Appl Math Comput 2003(6):277–303

    MathSciNet  MATH  Google Scholar 

  • Triphathi RK, Raich VV, Dookhitra K, Dayal SK, Hareesh AS (2012) Similarity between max min and riv technique with reference to two diseases diarrhea and diabetes. In: National Conference on Computational Intelligence and Signal Processing, pp 170–174

  • Wachspress E (1998) Iterative solution of the Lyapunov matrix equation. Appl Math Lett 1(1):87–90

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieyong Zhou.

Ethics declarations

Conflict of interest

All authors of this paper have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (No. 12071088).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhou, J. & He, Q. An extension method for fully fuzzy Sylvester matrix equation. Soft Comput 25, 5763–5774 (2021). https://doi.org/10.1007/s00500-021-05573-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05573-z

Keywords

Navigation