Skip to main content
Log in

Global sensitivity analysis for the boundary control of an open channel

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The goal of this paper is to solve the global sensitivity analysis for a particular control problem. More precisely, the boundary control problem of an open-water channel is considered, where the boundary conditions are defined by the position of a down stream overflow gate and an upper stream underflow gate. The dynamics of the water depth and of the water velocity are described by the Shallow-Water equations, taking into account the bottom and friction slopes. Since some physical parameters are unknown, a stabilizing boundary control is first computed for their nominal values, and then a sensitivity analysis is performed to measure the impact of the uncertainty in the parameters on a given to-be-controlled output. The unknown physical parameters are described by some probability distribution functions. Numerical simulations are performed to measure the first-order and total sensitivity indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira F (2014) Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE’s by a single control. Math Control Signals Syst 26(1):1–46

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastin G, Coron J-M, d’Andréa Novel B (2008) Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks. In: 17th IFAC world congress. Lecture notes for the pre-congress workshop on complex embedded and networked control systems, Seoul

  4. Bastin G, Coron J-M, d’Andréa Novel B (2009) On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw Heterog Media 4(2):177–187

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodart O, Fabre C (1995) Controls insensitizing the norm of the solution of a semilinear heat equation in unbounded domains. J Math Anal Appl 195:658–683

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodart O, González-Burgos M, Pérez-García R (2004) Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. Commun Partial Differ Equ 29(7–8):1017–1050

    Article  MathSciNet  MATH  Google Scholar 

  7. Coron J-M (2007) Control and nonlinearity. In: Mathematical surveys and monographs, vol 136. American Mathematical Society, Providence

  8. Coron J-M, Bastin G, d’Andréa Novel B (2008) Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J Control Optim 47(3):1460–1498

    Article  MathSciNet  MATH  Google Scholar 

  9. Cukier RI, Levine HB, Shuler KE (1978) Nonlinear sensitivity analysis of multiparameter model systems. J Comput Phys 26(1):1–42

    Article  MathSciNet  MATH  Google Scholar 

  10. Dáger R (2006) Insensitizing controls for the 1-D wave equation. SIAM J Control Optim 45(5):1758–1768

    Article  MathSciNet  MATH  Google Scholar 

  11. de Teresa L (1997) Controls insensitizing the norm of the solution of a semilinear heat equation in unbounded domains. ESAIM Control Optim Calc Var 2:125–149

    Article  MathSciNet  MATH  Google Scholar 

  12. de Teresa L (2000) Insensitizing controls for a semilinear heat equation. Commun Partial Differ Equ 25(1–2):39–72

    Article  MathSciNet  MATH  Google Scholar 

  13. de Teresa L, Zuazua E (2009) Identification of the class of initial data for the insensitizing control of the heat equation. Commun Pure Appl Anal 8(1):457–471

    Article  MathSciNet  MATH  Google Scholar 

  14. Dos Santos V, Prieur C (2008) Boundary control of open channels with numerical and experimental validations. IEEE Trans Control Syst Technol 16(6):1252–1264

    Article  Google Scholar 

  15. Efron B, Stein C (1981) The jackknife estimate of variance. Ann Stat 9(3):586–596

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang K-T, Li R, Sudjianto A (2005) Design and modeling for computer experiments. CRC Press, New York

    Book  MATH  Google Scholar 

  17. Fernández-Cara E, Garcia GC, Osses A (2003) Insensitizing controls for a large-scale ocean circulation model. Comptes Rendus Math 337(4):265–270

    Article  MathSciNet  MATH  Google Scholar 

  18. Gamboa F, Janon A, Klein T, Lagnoux-Renaudie A, Prieur C (2016) Statistical inference for Sobol pick freeze Monte Carlo method. Statistics (to appear)

  19. Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math Model Numer Anal 41(3):575–605

    Article  MathSciNet  MATH  Google Scholar 

  20. Grepl MA, Patera AT (2005) A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Mathl Model Numer Anal 39(1):157–181

    Article  MathSciNet  MATH  Google Scholar 

  21. Guerrero S (2007) Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann de l’Inst Henri Poincare (C) Non Linear Anal 24(6):1029–1054

    Article  MathSciNet  MATH  Google Scholar 

  22. Gueye M (2013) Insensitizing controls for the Navier–Stokes equations. Ann de l’Inst Henri Poincare (C) Non Linear Anal 30(5):825–844

    Article  MathSciNet  MATH  Google Scholar 

  23. Hastie T (2014) GAM: generalized additive models. R package version 1.09.1

  24. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91(10–11):1175–1209

    Article  Google Scholar 

  25. Hoeffding WF (1948) A class of statistics with asymptotically normal distributions. Ann Math Stat 19:293–325

    Article  MathSciNet  MATH  Google Scholar 

  26. Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Engi Syst Saf 52(1):1–17

    Article  Google Scholar 

  27. Huynh DBP, Rozza G, Sen S, Patera AT (2007) A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus Mathematique 345(8):473–478

    Article  MathSciNet  MATH  Google Scholar 

  28. Janon A, Klein T, Lagnoux A, Nodet M, Prieur C (2014) Asymptotic normality and efficiency of two Sobol index estimators. ESAIM Probab Stat 18:342–364

    Article  MathSciNet  MATH  Google Scholar 

  29. Janon A, Nodet M, Prieur C (2013) Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values. ESAIM Math Model Numer Anal 47(2):317–348

    Article  MathSciNet  MATH  Google Scholar 

  30. Janon A, Nodet M, Prieur C (2014) Uncertainties assessment in global sensitivity indices estimation from metamodels. Int J Uncertain Quantif 4(1):21–36

    Article  MathSciNet  Google Scholar 

  31. Janon A, Nodet M, Prieur C (2015) Goal-oriented error estimation for reduced basis method, with application to certified sensitivity analysis. J Sci Comput (to appear)

  32. Janon A, Nodet M, Prieur Ch., Prieur Cl. (2014) Global sensitivity analysis for the boundary control of an open channel. In: 53rd IEEE conference on decision and control, Los Angeles, pp 589–594

  33. Li T-T (1994) Global classical solutions for quasilinear hyperbolic systems. In: RAM: research in applied mathematics, vol 32. Masson, Paris

  34. Micu S, Ortega JH, de Teresa L (2004) An example of \(\epsilon \)-insensitizing controls for the heat equation with no intersecting observation and control regions. Appl Math Lett 17(8):927–932

    Article  MathSciNet  MATH  Google Scholar 

  35. Monod H, Naud C, Makowski D (2006 ) Uncertainty and sensitivity analysis for crop models. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models: evaluation, analysis, parameterization, and applications, chapter 4. Elsevier, Amsterdam, pp 55–99

  36. Nguyen NC, Veroy K, Patera AT (2005) Certified real-time solution of parametrized partial differential equations. In: Handbook of materials modeling, pp 1523–1558

  37. Prieur C, Winkin J, Bastin G (2008) Robust boundary control of systems of conservation laws. Math Control Signals Syst 20(2):173–197

    Article  MathSciNet  MATH  Google Scholar 

  38. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  39. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. In: Wiley series in probability and statistics. Wiley, Chichester

  40. Santner TJ, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer, New York

    Book  MATH  Google Scholar 

  41. Schaback R (2003) Mathematical results concerning kernel techniques. In: Prep. 13th IFAC symposium on system identification, Rotterdam. Citeseer, pp 1814–1819

  42. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I–II. Q Appl Math 45(3):561–590

    MathSciNet  MATH  Google Scholar 

  43. Sobol’ IM (1993) Sensitivity analysis for nonlinear mathematical models. Mathl Model Comput Exp 1:407–414

    MathSciNet  MATH  Google Scholar 

  44. Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  45. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  46. Tissot J-Y, Prieur C (2015) A randomized orthogonal array-based procedure for the estimation of first- and second-order Sobol’ indices. J Stat Comput Simul 85(7):1358–1381

    Article  MathSciNet  Google Scholar 

  47. Veroy K, Patera AT (2005) Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47(8–9):773–788

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Janon.

Appendix: Technical proofs

Appendix: Technical proofs

Proof of Proposition 1

Let us first note that it follows from (2) and \(Q=BHV\) that (by omitting the time variable)

$$\begin{aligned} B H(0) V(0) = U _0 B \mu _0\sqrt{2g(z_{\mathrm{up}}-H(0))} \end{aligned}$$

which is equivalent to

$$\begin{aligned} V(0) = U _0 \frac{1}{H(0)} \mu _0\sqrt{2g(z_{\mathrm{up}}-H(0))}. \end{aligned}$$
(37)

On the other side, the first line of (13) yields with (7) and the definitions of v and h, the following

$$\begin{aligned} V(0) - V ^\star + ( H (0) - H ^\star ) \sqrt{\frac{g}{H^\star }} = k_0 ( V(0)- V ^\star ) - k_0 (H(0) - H ^\star ) \sqrt{\frac{g}{H^\star }} , \end{aligned}$$

which may be rewritten as

$$\begin{aligned} V(0) =V ^{\star } -\frac{1+ k_0}{1- k_0} ( H (0) - H ^\star ) \sqrt{\frac{g}{H^{\star }}} . \end{aligned}$$
(38)

Therefore, with (37) and (38), (2) and the first line of (13) are equivalent as soon as the first control is defined by (11).

Let us compute the control \(U_L\) in a similar way. To do that, we first deduce from (3) the following

$$\begin{aligned} (H(L)- h _ s - U _L)^3 = \frac{ H (L) ^2V (L) ^2}{2 g \mu _L ^2} \end{aligned}$$

and thus

$$\begin{aligned} V(L)=\frac{\sqrt{2 g \mu _L ^2(H(L)- h _ s - U _L)^3}}{H (L)}. \end{aligned}$$
(39)

Moreover, from the second line of (13), with (7) and the expressions of v and h, it holds

$$\begin{aligned} V(L) -V ^\star - ( H( L) - H ^\star ) \displaystyle \sqrt{\frac{g }{H^\star }} = k_L (V(L) -V ^\star ) + k_L (H(L) -H ^\star ) \displaystyle \sqrt{\frac{g }{H^\star }} \end{aligned}$$

and also

$$\begin{aligned} V(L) = V ^\star + \frac{1+ k_L}{1- k_l} ( H( L) - H ^\star ) \sqrt{\frac{g }{H^\star }}. \end{aligned}$$
(40)

From (39) and (40) we get that (3) and the second line (13) are equivalent as soon as the control \(U_L\) is defined by

$$\begin{aligned} \sqrt{2 g \mu _L ^2 ( H(L) - h_s - U_L ) ^3} = H (L)\left( V ^\star + \frac{1+ k_L}{1- k_L} ( H( L) - H ^\star ) \sqrt{\frac{g }{H^\star }} \right) \end{aligned}$$

which is equivalent to (12). This concludes the proof of Proposition 1. \(\square \)

Proof of Proposition 3

For sake of conciseness, we omit the time variable: for instance H(0) stands for H(0, t) for each t. Let us define \( \alpha =\frac{1+k_0}{1-k_0}, \quad \beta =\sqrt{\frac{g}{H^\star _\text {nom}}} .\)

At \(x=0\), we take, from the proof of Proposition 1:

$$\begin{aligned} H(0) V(0) = U_0 \mu _0 \sqrt{2g(z_{\mathrm{up}}-H(0))} \end{aligned}$$

with

$$\begin{aligned} U_0 = \frac{H(0)(V^\star _\text {nom}-\alpha (H(0)-H^\star _\text {nom})\beta )}{\mu _0\sqrt{2g(z_{\mathrm{up},\text {nom}}-H(0))}} \end{aligned}$$

that is:

$$\begin{aligned} v(0) = \sqrt{\frac{z_{\mathrm{up}}-H(0)}{z_{\mathrm{up},\text {nom}}-H(0)}} ( V^\star _\text {nom}- \alpha ( H(0)-H^\star _\text {nom}) \beta ) - V^\star . \end{aligned}$$

Now, given the change of variables between (VH), (vh), this equation could be rewritten as a nonlinear relation between v(0) and h(0), hence, as a nonlinear relation between \(\xi _1(0)\) and \(\xi _2(0)\). However, to keep the resolution simple, we have to linearize this equation. This linearization is made in accordance with the linearization of the Shallow-Water equation for (HV) near \((H^\star , V^\star )\), hence for (hv) near the origin. We do the same here; hence by Taylor expansion around \(h=0\), we get \( v(0)= \mathcal {A}+ \mathcal {B}h(0) + o (h(0)) \) with

$$\begin{aligned} \mathcal {A}= \frac{\mu _0}{\mu _{0,\text {nom}}}\sqrt{ \frac{H^\star -z_{\mathrm{up}} }{H^\star -z_{\mathrm{up},\text {nom}}}}( V^\star _\text {nom}-\alpha \beta (H^\star -H^\star _\text {nom}) ) - V^\star , \end{aligned}$$

and

$$\begin{aligned} \mathcal {B}= \frac{\mu _0}{\mu _{0,\text {nom}}}\sqrt{\frac{H^\star -z_{\mathrm{up}} }{H^\star -z_{\mathrm{up},\text {nom}}}}\left( - \alpha \beta + \frac{(z_{\mathrm{up}}-z_{\mathrm{up},\text {nom}})( V^\star _\text {nom}- \alpha \beta (H^\star -H^\star _\text {nom}) ) }{2(H^\star -z_{\mathrm{up}})(H^\star -z_{\mathrm{up},\text {nom}})}\right) . \end{aligned}$$

Similarly, at \(x=L\), we have

$$\begin{aligned} V(L) = \frac{\sqrt{2g } \mu _L}{H(L)} \left( e_h + \left( \frac{H(L)(V^\star _\text {nom}+\alpha _L \beta e_H)}{\sqrt{2g} \mu _{L}} \right) ^{2/3} \right) ^{3/2} \end{aligned}$$

where \(\alpha _L=\frac{1+k_L}{1-k_L}\), and

$$\begin{aligned} e_h = h_{s,\text {nom}} - h_s, \quad e_H = H(L)- H^\star _\text {nom}. \end{aligned}$$

Therefore,

$$\begin{aligned} v(L) = \mathcal {C}+ \mathcal {D}h(L) + o(h(L)), \end{aligned}$$

with

$$\begin{aligned} \mathcal {C}= & {} {\frac{\sqrt{2g}}{4}}\mu _L \left( 2 h_{s,\text {nom}}-2h_s\right. \\&+\left. 2^{\frac{2}{3}} \left( -H^\star \frac{\left( -V^\star _{\text {nom}}+\alpha _L \beta _{\text {nom}} \times H^\star _{\text {nom}}\right) }{\left( \sqrt{g}\mu _{L,\text {nom}}\right) }\right) ^{\frac{2}{3}}\right) \\&\times \frac{\sqrt{\left( 4 h_{s,\text {nom}}-4 h_s+2\times 2^{\frac{2}{3}} \left( -H^\star \times \frac{\left( -V^\star _{\text {nom}}+\alpha _L \beta _{\text {nom}} H^\star _{\text {nom}}\right) }{\left( \sqrt{g} \mu _{L,\text {nom}}\right) }\right) ^{\frac{2}{3}}\right) }}{H^\star }\\ \mathcal {D}= & {} -{\frac{1}{2}} \left( 2^{\frac{1}{6}} \left( -H^\star \frac{(-V^\star _{\text {nom}}+\alpha _L \beta _{\text {nom}} H^\star _{\text {nom}})}{\left( \sqrt{g} \mu _{L,\text {nom}}\right) }\right) ^{\frac{2}{3}} \alpha _L \beta _{\text {nom}} H^\star \right. \\&-\left. \sqrt{2} V^\star _{\text {nom}} h_{s,\text {nom}}+\sqrt{2} V^\star _{\text {nom}} h_s+\sqrt{2} \alpha _L \beta _{\text {nom}} H^\star _{\text {nom}} h_{s,\text {nom}}\right. \\&\left. -\sqrt{2}\alpha _L \beta _{\text {nom}} H^\star _{\text {nom}} h_s\right) \\&\times \sqrt{\left( 4 h_{s,\text {nom}}-4h_s+2 \times 2^{\frac{2}{3}} \left( -H^\star \frac{(-V^\star _{\text {nom}}+\alpha _L \beta _{\text {nom}} \times H^\star _{\text {nom}})}{\left( \sqrt{g}\mu _{L,\text {nom}}\right) }\right) ^{\frac{2}{3}}\right) }\\&\times \mu _L \frac{\sqrt{g}}{((-V^\star _{\text {nom}}+\alpha _L \beta _{\text {nom}} H^\star _{\text {nom}})H^{\star 2} )}. \end{aligned}$$

Thus, the linearized boundary relations satisfied by \(\xi _1\) and \(\xi _2\) in the real-life model are given by (18) and (19). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janon, A., Nodet, M., Prieur, C. et al. Global sensitivity analysis for the boundary control of an open channel. Math. Control Signals Syst. 28, 6 (2016). https://doi.org/10.1007/s00498-015-0151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-015-0151-4

Keywords

Navigation