Skip to main content
Log in

Robust boundary control of systems of conservation laws

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The stability problem of a system of conservation laws perturbed by non-homogeneous terms is investigated. These non-homogeneous terms are assumed to have a small C 1-norm. By a Riemann coordinates approach a sufficient stability criterion is established in terms of the boundary conditions. This criterion can be interpreted as a robust stabilization condition by means of a boundary control, for systems of conservation laws subject to external disturbances. This stability result is then applied to the problem of the regulation of the water level and the flow rate in an open channel. The flow in the channel is described by the Saint-Venant equations perturbed by small non-homogeneous terms that account for the friction effects as well as external water supplies or withdrawals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banda MK, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media 1(1): 41–56

    MATH  MathSciNet  Google Scholar 

  2. Bressan A (2000) Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Oxford University Press, New York

    MATH  Google Scholar 

  3. Chow VT (1954) Open-channel hydraulics, International Student edn. Mc Graw-Hill Civil Engineering Series, New York

    Google Scholar 

  4. Coron J-M, d’Andréa-Novel B, Bastin G (2007) A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans Autom Control 52(1): 2–11

    Article  Google Scholar 

  5. Dos Santos V, Prieur C (2008) Boundary control of open channels with numerical and experimental validations. IEEE Trans Control Syst Tech (to appear)

  6. Garcia A, Hubbard M, De Vries J (1992) Open channel transient flow control by discrete time LQR methods. Automatica 28(2): 255–264

    Article  MATH  Google Scholar 

  7. Graf W (1998) Fluvial Hydraulics. Wiley, New York

    Google Scholar 

  8. Greenberg J-M, Li T-T (1984) The effect of boundary damping for the quasilinear wave equations. J Differ equ 52: 66–75

    Article  MATH  MathSciNet  Google Scholar 

  9. de Halleux J, Prieur C, Coron J-M, d’Andréa-Novel B, Bastin G (2003) Boundary feedback control in networks of open channels. Automatica 39(8): 1365–1376

    Article  MATH  MathSciNet  Google Scholar 

  10. Haut B, Bastin G (2005) A second order model for road traffic networks. In: Proceedings of 8th International IEEE Conference on Intelligent Transportation Systems (IEEE-ITSC’05). Vienna, Austria, pp 178–184

  11. Li T-T (1994) Global classical solutions for quasilinear hyperbolic systems. In: RAM: Research in Applied Mathematics, vol 32. Masson, Paris. Wiley, Chichester

  12. Li T-T, Yu W-C (1985) Boundary value problems for quasilinear hyperbolic systems. Duke University Press, Durkam, Duke University Mathematical Series (DUM)

    MATH  Google Scholar 

  13. Litrico X, Fromion V (2006) Boundary control of linearized Saint-Venant equations oscillating modes. Automatica 42(6): 967–972

    Article  MATH  MathSciNet  Google Scholar 

  14. Litrico X, Georges D (1999) Robust continuous-time and discrete-time flow control of a down-river system (I): Modelling. Appl Math Model 23(11): 809–827

    Article  MATH  Google Scholar 

  15. Litrico X, Georges D (1999) Robust continuous-time and discrete-time flow control of a down-river system (II): Controller design. Appl Math Model 23(11): 829–846

    Article  MATH  Google Scholar 

  16. Litrico X, Georges D (2001) Robust LQG control of single input multiple output dam-river systems. Int J Syst Sci 32(6): 798–805

    Article  Google Scholar 

  17. Malaterre PO (1998) Pilot: a linear quadratic optimal controller for irrigation canals. J Irrig Drain Eng 124(3): 187–194

    Article  Google Scholar 

  18. Malaterre PO, Rogers DC, Schuurmans J (1998) Classification of canal control algorithms. ASCE J Irrig Drain Eng 124(1): 3–10

    Article  Google Scholar 

  19. de Saint-Venant B (1871) Théorie du mouvement non-permanent des eaux avec applications aux crues des rivières et à l’introduction des marées dans leur lit. Comptes-rendus de l’Académie des Sciences vol 73, pp 148–154, 237–240

  20. Villegas JA (2007) A port-Hamiltonian approach to distributed parameter systems, Ph. D. Thesis, University of Twente, Enschede, The Netherlands

  21. Zorich VA (2004) Mathematical analysis. II. Universitext. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Prieur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieur, C., Winkin, J. & Bastin, G. Robust boundary control of systems of conservation laws. Math. Control Signals Syst. 20, 173–197 (2008). https://doi.org/10.1007/s00498-008-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-008-0028-x

Keywords

Navigation