Skip to main content
Log in

Null controllability of Kolmogorov-type equations

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study the null controllability of Kolmogorov-type equations \(\partial _t f + v^\gamma \partial _x f - \partial _v^2 f = u(t,x,v) 1_{\omega }(x,v)\) in a rectangle \(\Omega \), under an additive control supported in an open subset \(\omega \) of \(\Omega \). For \(\gamma =1\), with periodic-type boundary conditions, we prove that null controllability holds in any positive time, with any control support \(\omega \). This improves the previous result by Beauchard and Zuazua (Ann Ins H Poincaré Anal Non Linéaire 26:1793–1815, 2009), in which the control support was a horizontal strip. With Dirichlet boundary conditions and a horizontal strip as control support, we prove that null controllability holds in any positive time if \(\gamma =1\) or if \(\gamma =2\) and \(\omega \) contains the segment \(\{v=0\}\), and only in large time if \(\gamma =2\) and \(\omega \) does not contain the segment \(\{v=0\}\). Our approach, inspired from Benabdallah et al. (C R Math Acad Sci Paris 344(6):357–362, 2007), Lebeau and Robbiano (Commun Partial Differ Equ 20:335–356, 1995), is based on two key ingredients: the observability of the Fourier components of the solution of the adjoint system, uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F, Cannarsa P, Fragnelli G (2006) Carleman estimates for degenerate parabolic operators with applications to null controllability. J Evol Equ 6(2):161–204

    Article  MATH  MathSciNet  Google Scholar 

  2. Alinhac S, Zuily C (1981) Uniqueness and nonuniqueness of the cauchy problem for hyperbolic operators with double characteristics. Commun Partial Differ Equ 6(7):799–828

    Article  MATH  MathSciNet  Google Scholar 

  3. Almog Y (2008) The stability of the normal state of superconductors in the presence of electric currents. SIAM J Math Anal 40(2):824–850

    Article  MATH  MathSciNet  Google Scholar 

  4. Beauchard K, Cannarsa P, Guglielmi R (2012) Null controllability of Grushin-type operators in dimension two. J Eur Math Soc (to appear)

  5. Beauchard K, Zuazua E (2009) Some controllability results for the 2D Kolmogorov equation. Ann Inst H Poincaré Anal Non Linéaire 26:1793–1815

    Article  MATH  MathSciNet  Google Scholar 

  6. Benabdallah A, Dermenjian Y, Le Rousseau J (2007) Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J Math Anal Appl 336(2):865–887

    Article  MATH  MathSciNet  Google Scholar 

  7. Benabdallah A, Dermenjian Y, Le Rousseau J (2007) On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C R Math Acad Sci Paris 344(6):357–362

    Article  MATH  MathSciNet  Google Scholar 

  8. Br Tzis H (1983) Analyse fonctionnelle, theorie et applications. Masson, Paris

    Google Scholar 

  9. Cannarsa P, de Teresa L (2009) Controllability of 1-d coupled degenerate parabolic equations. Electron J Differ Equ Paper No. 73:21

  10. Cannarsa P, Fragnelli G, Rocchetti D (2007) Null controllability of degenerate parabolic operators with drift. Netw Heterog Media 2(4):695–715 (electronic)

    Google Scholar 

  11. Cannarsa P, Fragnelli G, Rocchetti D (2008) Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J Evol Equ 8:583–616

    Article  MATH  MathSciNet  Google Scholar 

  12. Cannarsa P, Martinez P, Vancostenoble J (2004) Persistent regional null controllability for a class of degenerate parabolic equations. Commun Pure Appl Anal 3(4):607–635

    Article  MATH  MathSciNet  Google Scholar 

  13. Cannarsa P, Martinez P, Vancostenoble J (2005) Null controllability of degenerate heat equations. Adv Differ Equ 10(2):153–190

    MATH  MathSciNet  Google Scholar 

  14. Cannarsa P, Martinez P, Vancostenoble J (2008) Carleman estimates for a class of degenerate parabolic operators. SIAM J Control Optim 47(1):1–19

    Article  MATH  MathSciNet  Google Scholar 

  15. Cannarsa P, Martinez P, Vancostenoble J (2009) Carleman estimates and null controllability for boundary-degenerate parabolic operators. C R Math Acad Sci Paris 347(3–4):147–152

    Article  MATH  MathSciNet  Google Scholar 

  16. Doubova A, Fernández-Cara E, Zuazua E (2002) On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J Control Optim 42(3):798–819

    Article  Google Scholar 

  17. Doubova A, Osses A, Puel J-P (2002) Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM Control Optim Calc Var 8:621–661

    Article  MATH  MathSciNet  Google Scholar 

  18. Ervedoza S (2008) Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun Partial Differ Equ 33(10–12):1996–2019

    Article  MATH  MathSciNet  Google Scholar 

  19. Fabre C, Puel JP, Zuazua E (1995) Approximate controllability of the semilinear heat equation. Proc Roy Soc Edinb 125A:31–61

    Article  MathSciNet  Google Scholar 

  20. Fattorini HO, Russel D (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Ration Mech Anal 43:272–292

    Article  MATH  Google Scholar 

  21. Fernández-Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst H Poincaré Anal Non Linéaire 17:583–616

    Article  MATH  Google Scholar 

  22. Fernández-Cara E, Zuazua E (2000) The cost of approximate controllability for heat equations: the linear case. Adv Differ Equ 5(4–6):465–514

    MATH  Google Scholar 

  23. Fernández-Cara E, Zuazua E (2002) On the null controllability of the one-dimensional heat equation with BV coefficients. Comput Appl Math 12:167–190

    Google Scholar 

  24. Flores C, de Teresa L (2010) Carleman estimates for degenerate parabolic equations with first order terms and applications. C R Math Acad Sci Paris 348(7–8):391–396

    Article  MATH  MathSciNet  Google Scholar 

  25. Fursikov AV, Imanuvilov OY (1994) Controllability of evolution equations. Lecture notes series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 34

  26. González-Burgos M, de Teresa L (2007) Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv Diff Equ 12(11):1201–1240

    MATH  Google Scholar 

  27. Hörmander L (1967) Hypoelliptic second order differential equations. Acta Math 119:147–171

    Article  MATH  MathSciNet  Google Scholar 

  28. Imanuvilov OY (1993) Boundary controllability of parabolic equations. Uspekhi Mat Nauk 48(3(291)):211–212

    Google Scholar 

  29. Imanuvilov OY (1995) Controllability of parabolic equations. Math Sb 186(6):109–132

    MathSciNet  Google Scholar 

  30. Imanuvilov OY, Yamamoto M (2000) Carleman estimate for a parabolic equation in sobolev spaces of negative order and its applications. In: Chen G et al (eds) Control of nonlinear distributed parameter systems. Marcel Dekker, New York, pp 113–137

    Google Scholar 

  31. Lebeau G, Robbiano L (1995) Contrôle exact de l’équation de la chaleur. Commun Partial Differ Equ 20:335–356

    Article  MATH  MathSciNet  Google Scholar 

  32. Lebeau G, Le Rousseau J (2012) On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM:COCV 18:712–747

    MATH  MathSciNet  Google Scholar 

  33. Lopez A, Zuazua E (2002) Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Ann IHP Anal Non linéaire 19(5):543–580

    Article  MATH  MathSciNet  Google Scholar 

  34. Martinez P, Vancostenoble J (2006) Carleman estimates for one-dimensional degenerate heat equations. J Evol Equ 6(2):325–362

    Article  MATH  MathSciNet  Google Scholar 

  35. Martinez P, Vancostonoble J, Raymond J-P (2003) Regional null controllability of a linearized Crocco type equation. SIAM J Control Optim 42(2):709–728

    Article  MATH  MathSciNet  Google Scholar 

  36. Miller L (2005) On the null-controllability of the heat equation in unbounded domains. Bull Des Sci Math 129(2):175–185

    Article  MATH  Google Scholar 

  37. Miller L (2006) On exponential observability estimates for the heat semigroup with explicit rates. Rendiconti Lincei: Matematica e Applicazioni 17(4):351–366

    Article  MATH  Google Scholar 

  38. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol 44. Springer, New York

    Book  Google Scholar 

  39. Le Rousseau J (2007) Carleman estimates and controllability results for the one-dimensional heat equation with bv coefficients. J Differ Equ 233(2):417–447

    Article  MATH  Google Scholar 

  40. Vancostenoble J, Zuazua E (2008) Null controllability for the heat equation with singular inverse-square potentials. J Funct Anal 254(7):1864–1902

    Article  MATH  MathSciNet  Google Scholar 

  41. Villani C (2009) Hypocoercivity. Mem Am Math Soc 202(950)

  42. Zuazua E (1997) Approximate controllability of the semilinear heat equation: boundary control. In: Bristeau MO et al (eds) International conference in honour of Prof. R. Glowinski, computational sciences for the 21st century. Wiley, pp 738–747

  43. Zuazua E (1997) Finite dimensional null-controllability of the semilinear heat equation. J Math Pures et Appl 76:237–264

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author warmly thanks Philippe Gravejat, Franois Golse and Thierry Paul for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Beauchard.

Additional information

The author was partially supported by the “Agence Nationale de la Recherche” (ANR), Projet Blanc EMAQS number ANR-2011-BS01-017-01.

Appendix: Proof of Proposition 1

Appendix: Proof of Proposition 1

Let \(a^{\prime }, b^{\prime }\) be such that \(-1<a<a^{\prime }<b^{\prime }<b<1\). All the computations of the proof will be made assuming, first, \(g \in H^1(0,T;L^2(-1,1)) \cap L^2(0,T;H^2 \cap H^1_0(-1,1))\). Then, the conclusion of Proposition 1 will follow by a density argument.

Consider the weight function

$$\begin{aligned} \alpha (t,v):=\frac{M \beta (v)}{t(T-t)}\, ,\quad (t,v) \in (0,T) \times \mathbb R , \end{aligned}$$
(35)

where \(\beta \in C^2([-1,1])\) satisfies

$$\begin{aligned}&\beta \geqslant 1\quad \text{ on }\quad (-1,1),\end{aligned}$$
(36)
$$\begin{aligned}&|\beta ^{\prime }|>0 \quad \text{ on }\quad [-1,a^{\prime }] \cup [b^{\prime },1],\end{aligned}$$
(37)
$$\begin{aligned}&\beta ^{\prime }(1)>0,\quad \beta ^{\prime }(-1)<0,\end{aligned}$$
(38)
$$\begin{aligned}&\beta ^{\prime \prime } <0\quad \text{ on } \quad [-1,a^{\prime }] \cup [b^{\prime },1] \end{aligned}$$
(39)

and \(M = M(T,n,\beta )>0\) will be chosen later on. We also introduce the function

$$\begin{aligned} z(t,v):=g(t,v) e^{-\alpha (t,v)}, \end{aligned}$$
(40)

that satisfies

$$\begin{aligned} e^{-\alpha } \mathcal P _n g = P_{1}z + P_{2} z + P_{3} z, \end{aligned}$$
(41)

where

$$\begin{aligned} P_{1}z:= - \frac{\partial ^{2} z}{\partial v^{2}} +(\alpha _{t}-\alpha _{v}^{2}) z ,\, P_{2}z:= \frac{\partial z}{\partial t} - 2 \alpha _{v} \frac{\partial z}{\partial v} + i n v^\gamma z,\, P_{3}z:= - \alpha _{vv} z. \end{aligned}$$
(42)

We develop the classical proof (see [25]), taking the \(L^{2}(Q)\)-norm in the identity (41), then developing the double product which leads to

$$\begin{aligned} \int \limits _{Q} \left( \mathfrak{R }[ P_{1}z \overline{P_{2}z}] - \frac{1}{2} |P_{3}z|^{2} \right) \mathrm{d}v \mathrm{d}t \leqslant \int \limits _{Q} | e^{-\alpha } \mathcal{P }_n g |^2 \mathrm{d}v \mathrm{d}t, \end{aligned}$$
(43)

where \(Q:=(0,T) \times (-1,1)\). After computations (see [5] for details, we get

$$\begin{aligned}&\int \limits _{Q} |z|^{2} \left\{ \!-\! \frac{1}{2} (\alpha _{t}-\alpha _{v}^{2})_{t} \!+\! \left[ (\alpha _{t}-\alpha _{v}^{2}) \alpha _{v} \right] _{v} \!-\! \frac{1}{2}\alpha _{vv}^{2} \right\} \mathrm{d}v \mathrm{d}t \nonumber \\&\quad \!+\! \int \limits _{Q} \left\{ n \gamma v^{\gamma -1} \mathfrak I \left( \overline{z} \frac{\partial z}{\partial v} \right) - \alpha _{vv} \Big | \frac{\partial z}{\partial v} \Big |^{2} \alpha _{vv} \right\} \mathrm{d}v\mathrm{d}t \leqslant \int \limits _{Q} | e^{-\alpha } \mathcal P _n g |^2 \mathrm{d}v \mathrm{d}t. \end{aligned}$$
(44)

Now, in the left hand side of (44), we separate the terms on \((0,T) \times (a^{\prime },b^{\prime })\) and those on \((0,T)\times [(-1,a^{\prime }) \cup (b^{\prime },1)]\). One has

$$\begin{aligned}&-\alpha _{vv}(t,v) \geqslant \frac{C_{1} M}{t(T-t)} \qquad \forall v \in [-1,a^{\prime }] \cup [b^{\prime },1], \ t \in (0,T),\nonumber \\&|\alpha _{vv}(t,v)| \leqslant \frac{C_{2} M}{t(T-t)} \qquad \forall v \in [a^{\prime }b^{\prime }], \ t \in (0,T), \end{aligned}$$
(45)

where \(C_{1}=C_1(\beta ):=\min \{ -\beta ^{\prime \prime }(x) ; x \in [-1,a^{\prime }] \cup [b^{\prime },1] \}\) is positive thanks to the assumption (39) and \(C_{2}=C_2(\beta ):=\sup \{ |\beta ^{\prime \prime }(x)| ; x \in [a^{\prime },b^{\prime }] \}\). Moreover,

$$\begin{aligned} \begin{array}{l} \displaystyle -\frac{1}{2}(\alpha _{t}-\alpha _{v}^{2})_{t} + [ (\alpha _{t}-\alpha _{v}^{2}) \alpha _{v} ]_{v} - \frac{1}{2} \alpha _{vv}^{2} = \frac{1}{(t(T-t))^3} \left\{ M\beta (3Tt - T^{2} -3t^{2}) \right. \nonumber \\ \qquad \left. \displaystyle + M^{2} \left[ (2t-T) (\beta ^{\prime \prime } \beta +2\beta ^{\prime 2}) - \frac{t(T-t)\beta ^{\prime \prime ^2}}{2} \right] - 3M^{3} \beta ^{\prime \prime } \beta ^{\prime 2} \right\} . \end{array} \end{aligned}$$

Hence, owing to (37) and (39), there exist \(m_1=m_1(\beta )>0\,C_{3}=C_{3}(\beta )>0\) and \(C_{4}=C_{4}(\beta )>0\) such that for every \(M \geqslant M_1\) and \(t \in (0,T)\),

$$\begin{aligned}&\displaystyle -\frac{1}{2}(\alpha _{t}-\alpha _{v}^{2})_{t} \displaystyle + \left[ (\alpha _{t}-\alpha _{v}^{2}) \alpha _{v}\right] _{v} \displaystyle - \frac{1}{2} \alpha _{vv}^{2} \geqslant \frac{C_{3}M^{3}}{[t(T-t)]^{3}}\quad \forall v \in [0,a^{\prime }] \cup [b^{\prime },1],\nonumber \\&\quad \displaystyle \Big | -\frac{1}{2}(\alpha _{t}-\alpha _{v}^{2})_{t} + \left[ (\alpha _{t}-\alpha _{v}^{2}) \alpha _{v}\right] _{v} - \frac{1}{2} \alpha _{vv}^{2} \Big | \leqslant \frac{C_{4}M^{3}}{[t(T-t)]^{3}}\quad \forall v \in [a^{\prime },b^{\prime }]\, \end{aligned}$$
(46)

where

$$\begin{aligned} M_1=M_{1}(T,\beta ):=m_1(\beta )(T+T^2). \end{aligned}$$
(47)

Using (44), (45) and (46), we deduce, for every \(M \geqslant M_{1}\),

$$\begin{aligned}&\displaystyle \int \limits _{0}^{T} \int \limits _{(-1,a^{\prime })\cup (b^{\prime },1)} \frac{C_{1} M}{t(T-t)} \Big | \frac{\partial z}{\partial v} \Big |^{2} \mathrm{d}v\mathrm{d}t\nonumber \\&\qquad + \displaystyle \int \limits _{0}^{T} \int \limits _{(-1,a^{\prime })\cup (b^{\prime },1)} \left[ \frac{C_{3} M^{3}}{(t(T-t))^{3}} |z|^{2} - |n| \gamma |v|^{\gamma -1} \mathfrak I \left( \frac{\partial z}{\partial v} \overline{z} \right) \right] \mathrm{d}v \mathrm{d}t\nonumber \\&\qquad \displaystyle \leqslant \int \limits _{0}^{T} \int \limits _{a^{\prime }}^{b^{\prime }} \left[ \frac{C_{2} M}{t(T-t)} \Big | \frac{\partial z}{\partial x} \Big |^{2} + \frac{C_{4} M^{3}}{(t(T-t))^{3}} |z|^{2} + |n| \gamma v^{\gamma -1} \mathfrak I \left( \frac{\partial z}{\partial v} \overline{z} \right) \right] \mathrm{d}v \mathrm{d}t\nonumber \\&\qquad \displaystyle + \int \limits _{Q} | e^{-\alpha } \mathcal P _n g |^2 \mathrm{d}v \mathrm{d}t. \end{aligned}$$
(48)

Let

$$\begin{aligned} M_2=M_2(T,\beta ):=\frac{T^2 \sqrt{|n| \gamma }}{4 \root 4 \of {C_1 C_3}}. \end{aligned}$$
(49)

When \(M \geqslant M_2\), we have

$$\begin{aligned} \begin{array}{ll} \Big |n \gamma v^{\gamma -1} \mathfrak I \left( \frac{\partial z}{\partial v} \overline{z} \right) \Big | &{} \leqslant \frac{1}{2} \frac{ C_{3} M^{3} }{ (t(T-t))^{3} } |z|^{2} + \frac{1}{2} \frac{ (t(T-t))^{3} }{ C_{3} M^{3} } \gamma ^2 n^{2} \Big | \frac{\partial z}{\partial v} \Big |^{2} \\ &{} \leqslant \frac{1}{2} \frac{C_{3} M^{3}}{(t(T-t))^{3}} |z|^{2} + \frac{C_{1} M}{2 t(T-t)} |\frac{\partial z}{\partial v}|^{2}, \end{array} \end{aligned}$$
(50)

because

$$\begin{aligned} \begin{array}{ll} \frac{1}{2} \frac{ (t(T-t))^{3} }{ C_{3} M^{3} } \gamma ^2 n^{2} &{} = \frac{C_{1} M}{2 t(T-t)} \frac{(t(T-t))^{4} \gamma ^2 n^{2} }{C_{1}C_{3}M^{4} }\nonumber \\ &{} \leqslant \frac{C_{1} M}{2t(T-t)} \frac{ (T^{2}/4)^{4} \gamma ^2 n^{2} }{ C_{1}C_{3} M^{4} }\nonumber \\ &{} = \frac{C_{1} M}{2 t(T-t)} \frac{M_{2}^{4}}{M^{4}} \end{array} \end{aligned}$$

From now on, we take

$$\begin{aligned} M = M(T,n,\beta ):= \mathcal C _2 \max \{ T+T^2 ; \sqrt{|n|} T^2 \}\, \end{aligned}$$
(51)

where

$$\begin{aligned} \mathcal C _2=\mathcal C _2(\beta ):=\max \left\{ m_1 ; \frac{1}{4 \root 4 \of {C_1 C_3}} \right\} \end{aligned}$$

so that \(M \geqslant M_1\) and \(M_2\) (see (47) and (49)). We have

$$\begin{aligned}&\int \limits _{0}^{T} \int \limits _{(0-1,a^{\prime }) \cup (b^{\prime },1)} \left( \frac{C_{1} M}{2t(T-t)} \Big | \frac{\partial z}{\partial v} \Big |^{2} + \frac{C_{3} M^{3}}{2 (t(T-t))^{3}} |z|^{2} \right) \mathrm{d}v \mathrm{d}t\nonumber \\&\quad \leqslant \int \limits _{0}^{T} \int \limits _{a^{\prime }}^{b^{\prime }} \left( \frac{C_{2}^{\prime } M}{t(T-t)} \Big | \frac{\partial z}{\partial v} \Big |^{2}+ \frac{C_{6} M^{3}}{(t(T-t))^{3}} |z|^{2} \right) \mathrm{d}v \mathrm{d}t\nonumber \\&\quad + \int \limits _{Q} | e^{-\alpha } \mathcal P _n g |^2 \mathrm{d}v \mathrm{d}t, \end{aligned}$$
(52)

where \(C_6=C_6(\beta ):=C_4+C_3/2,\,C_2^{\prime }=C_2(\beta )=C_2+C_1/2\). Since for every \(\epsilon >0\)

$$\begin{aligned}&\!\!\!\!\!\!\!\!\frac{C_{1} M}{2 t(T-t)} \Big | \frac{\partial g}{\partial x} - \alpha _x g \Big |^{2} +\frac{C_{3} M^{3}}{2 (t(T-t))^{3}} |g|^{2}\nonumber \\&\!\!\!\!\!\!\!\!\quad \geqslant \left( 1-\frac{1}{1+\epsilon } \right) \frac{C_{1} M}{2t(T-t)} \Big | \frac{\partial g}{\partial x} \Big |^{2} + \frac{M^3}{2(t(T-t))^3}\left( C_{3} - \epsilon C_1 (\beta ^{\prime })^2 \right) |g|^2\, \end{aligned}$$
(53)

and choosing

$$\begin{aligned} \epsilon =\epsilon (\beta ):=\frac{C_3}{2 C_1\Vert \beta ^{\prime }\Vert _\infty ^2}\, , \end{aligned}$$

from (52), (53) and (40) we deduce that

$$\begin{aligned}&\int \limits _{0}^{T} \int \limits _{(0,a^{\prime }) \cup (b^{\prime },1)} \left( \frac{C_{7} M}{t(T-t)} \Big | \frac{\partial g}{\partial v} \Big |^{2} + \frac{C_{3} M^{3}|g|^{2}}{4(t(T-t))^{3}} \right) e^{-2\alpha } \mathrm{d}v \mathrm{d}t\nonumber \\&\quad \leqslant \int \limits _{Q} | e^{-\alpha } \mathcal P _n g |^2 \mathrm{d}v \mathrm{d}t + \int \limits _{0}^{T} \int \limits _{a^{\prime }}^{b^{\prime }} \left( \frac{C_{9} M^{3} |g|^{2}}{(t(T-t))^{3}} + \frac{C_{8} M}{t(T-t)} \Big | \frac{\partial g}{\partial v}\Big |^{2} \right) e^{-2\alpha } \mathrm{d}v \mathrm{d}t\, ,\nonumber \\ \end{aligned}$$
(54)

where \(C_7=C_7(\beta ):=[1-1/(1+\epsilon )]C_1/2,\,C_{8}=C_{8}(\beta ):=2C_{2}^{\prime }\) and \(C_{9}=C_{9}(\beta ):=C_{6}+2C_{2}^{\prime } \sup \{ \beta ^{\prime }(x)^{2} ; x \in [a^{\prime },b^{\prime }] \}\). Adding the same quantity in both sides, we get

$$\begin{aligned}&\int \limits _Q \left( \frac{C_{7} M}{t(T-t)} \Big | \frac{\partial g}{\partial v} \Big |^{2} + \frac{C_{3} M^{3}|g|^{2}}{4(t(T-t))^{3}} \right) e^{-2\alpha } \mathrm{d}v \mathrm{d}t \leqslant \int \limits _{Q} | e^{-\alpha } \mathcal P _n g |^2 \mathrm{d}v \mathrm{d}t\nonumber \\&\quad + \int \limits _{0}^{T} \int \limits _{a^{\prime }}^{b^{\prime }} \left( \frac{C_{11} M^{3} |g|^{2}}{(t(T-t))^{3}} + \frac{C_{10} M}{t(T-t)} \Big | \frac{\partial g}{\partial v}\Big |^{2} \right) e^{-2\alpha } \mathrm{d}v \mathrm{d}t, \end{aligned}$$
(55)

where \(C_{10}=C_{10}(\beta ):=C_{8}+C_7\) and \(C_{11}=C_{11}(\beta ):=C_{9}+C_3/4\). Thanks to a cut-off function \(\rho \) such that

$$\begin{aligned} 0 \leqslant \rho \leqslant 1, \quad \rho \equiv 1 \text{ on } (a^{\prime },b^{\prime }), \quad \text{ Supp }(\rho ) \subset (a,b) \end{aligned}$$

it is classic to get

$$\begin{aligned}&\int \limits _0^T \int \limits _{a^{\prime }}^{b^{\prime }} \frac{C_{10} M}{t(T-t)} \Big | \frac{\partial g}{\partial v}\Big |^{2} e^{-2\alpha } \mathrm{d}v \mathrm{d}t\nonumber \\&\quad \leqslant \int \limits _Q |\mathcal P _n g|^2 e^{-2\alpha } \mathrm{d}v \mathrm{d}t + \int \limits _0^T \int \limits _a^b \frac{C_{12} M^3 |g|^2 e^{-2\alpha }}{(t(T-t))^3} \mathrm{d}v \mathrm{d}t \end{aligned}$$

for some constant \(C_{12}=C_{12}(\beta )>0\). Combining (55) with the previous inequality, we get

$$\begin{aligned}&\int \limits _Q \left( \frac{C_{7} M}{t(T-t)} \Big | \frac{\partial g}{\partial v} \Big |^{2} + \frac{C_{3} M^{3}|g|^{2}}{4(t(T-t))^{3}} \right) e^{-2\alpha } \mathrm{d}v \mathrm{d}t\nonumber \\&\quad \leqslant \int \limits _{Q} 2 | e^{-\alpha } \mathcal{P }_n g |^2 \mathrm{d}v \mathrm{d}t + \int \limits _{0}^{T} \int \limits _{a}^{b} \frac{C_{13} M^{3} |g|^{2}}{(t(T-t))^{3}} e^{-2\alpha } \mathrm{d}v \mathrm{d}t\, , \end{aligned}$$
(56)

where \(C_{13}=C_{13}(\beta ,\rho ):=C_{11}+C_{12}\). Then, the global Carleman estimates (10) holds with

$$\begin{aligned} \mathcal{C }_1=\mathcal{C }_1(\beta ):=\frac{\min \left\{ C_7 ; C_3 /4 \right\} }{\max \left\{ 2 ; C_{13} \right\} }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauchard, K. Null controllability of Kolmogorov-type equations. Math. Control Signals Syst. 26, 145–176 (2014). https://doi.org/10.1007/s00498-013-0110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-013-0110-x

Keywords

Navigation