Skip to main content
Log in

Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae)

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Reproductive variation was studied in the tetraploid Pilosella aurantiaca, hexaploid P. rubra (both species with facultative autonomous apospory) and in their 2n + n hybrids, which were obtained by crossing with a sexual pollen parent (tetraploid P. officinarum). The different DNA content in P. aurantiaca and P. officinarum demonstrated the actual 2n + n origin, both spontaneous from the field and through experimental crosses, of their hexaploid hybrids. The octoploid 2n + n progeny were recovered from an experimental cross of P. rubra and P. officinarum. The reproductive pathways operating in two maternal facultatively apomictic species and in the hybrids were quantified using a flow cytometric analysis of seeds obtained from either open-pollinated or emasculated plants. Whereas both maternal species displayed a high penetrance of apomixis, the level of apomixis among the majority of 2n + n hybrids was much lower and variable. Some of the hexaploid hybrids had a reduced seed set. Compared to the respective maternal parents, the decrease in apomixis due to haploid parthenogenesis and/or n + n mating was evident in almost all unreduced hybrids, irrespective of their field/experimental origin and ploidy. Hence, the reproductive behaviour in the apomictic maternal parent was profoundly different from that of the 2n + n hybrids with a sexual parent in spite of the preservation of the complete maternal genome in the hybrids. The regulatory interactions in hybrid genomes, such as effects of modifiers, heterochrony, and epigenetic control, may be consistent with the different expressivity of apomixis observed under different genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis L. Plant Mol Biol 56:879–894

    Article  CAS  PubMed  Google Scholar 

  • Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchini M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334

    Article  CAS  PubMed  Google Scholar 

  • Batygina TB (ed) (2009) Embryology of flowering plants. Terminology and concepts. Vol. 3 Reproductive systems. Science Publishers, Enfield

    Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:228–245

    Article  Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20

    Article  CAS  PubMed  Google Scholar 

  • Bräutigam S, Greuter W (2007) A new treatment of Pilosella for the Euro-Mediterranean flora. Willdenowia 37:23–137

    Google Scholar 

  • Burson BL, Hussey MA, Actkinson JM, Shafer GS (2002) Effect of pollination time on the frequency of 2n + n fertilization in apomictic buffelgrass. Crop Sci 42:1075–1080

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc London 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  CAS  PubMed  Google Scholar 

  • Chapman H, Bicknell R (2000) Recovery of a sexual and an apomictic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. N Z J Ecol 24:81–85

    Google Scholar 

  • Curtis MD, Grossniklaus U (2007) Amphimixis and apomixis: two sides of the same coin. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives, Regnum Veg 147. A.R.G. Gantner Verlag, Rugell, pp 37–62

    Google Scholar 

  • Dresselhaus T, Carman JG, Savidan Y (2001) Genetic engineering of apomixis in sexual crops: a critical assessment of the apomixis technology. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission DG VI (FAIR), Mexico, D.F., pp 229–243

    Google Scholar 

  • Fehrer J, Šimek R, Krahulcová A, Krahulec F, Chrtek J, Bräutigam E, Bräutigam S (2005) Evolution, hybridisation, and clonal distribution of apo- and amphimictic species of Hieracium subgen. Pilosella (Asteraceae, Lactuceae) in a Central European mountain range. In: Bakker T, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process, Regnum Veg 143. A.R.G. Gantner Verlag, Rugell, pp 175–201

    Google Scholar 

  • Fehrer J, Krahulcová A, Krahulec F, Chrtek J Jr, Rosenbaumová R, Bräutigam S (2007) Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives, Regnum Veg 147. A.R.G. Gantner Verlag, Rugell, pp 359–390

    Google Scholar 

  • Fitze D, Fehrer J (2000) PCR-RFLP studies of non-coding chloroplast DNA in European Hieracium subgen Pilosella. Abh Ber Naturkundemus Görlitz 72(suppl.):4

    Google Scholar 

  • Gadella TWJ (1987) Sexual tetraploid and apomictic pentaploid populations of Hieracium pilosella (Compositae). Plant Syst Evol 157:219–245

    Article  Google Scholar 

  • Gadella TWJ (1988) Some notes on the origin of polyploidy in Hieracium pilosella aggr. Acta Bot Neerl 37:515–522

    Google Scholar 

  • Gottschlich G, Raabe U (1991) Zur Verbreitung, Ökologie und Taxonomie der Gattung Hieracium L. (Compositae) in Westfalen und angrenzenden Gebieten. Abh Westfäl Mus Naturkd 53:3–140

    Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  CAS  PubMed  Google Scholar 

  • Grimanelli D, García M, Kaszas E, Perotti E, Leblanc O (2003) Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165:1521–1531

    PubMed  Google Scholar 

  • Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev (Lancaster) 41:361–390

    Article  Google Scholar 

  • Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel TF (eds) (2007) Apomixis. Evolution, mechanisms and perspectives, Regnum Veg 147. A.R.G. Gantner Verlag, Rugell

    Google Scholar 

  • Houliston GJ, Chapman HM (2001) Sexual reproduction in field populations of the facultative apomict, Hieracium pilosella. N Z J Bot 39:141–146

    Article  Google Scholar 

  • Houliston GJ, Chapman HM, Bicknell RA (2006) The influence of genotype and environment on the fecundity and facultative expression of apomixis in Hieracium pilosella. Folia Geobot 41:165–181

    Article  Google Scholar 

  • Johri BM, Srivastava PS (eds) (2001) Reproductive biology of plants. Springer and Narosa Publishing House, Berlin

    Google Scholar 

  • Kaushal P, Malaviya DR, Roy AK, Pathak S, Agrawal A, Khare A, Siddiqui SA (2008) Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164:81–92

    Article  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266

    Article  Google Scholar 

  • Krahulcová A, Krahulec F (1999) Chromosome numbers and reproductive systems in selected representatives of Hieracium subgen. Pilosella in the Krkonoše Mts (the Sudeten Mts). Preslia 71:217–234

    Google Scholar 

  • Krahulcová A, Suda J (2006) A modified method of flow cytometric seed screen simplifies the quantification of progeny classes with different ploidy levels. Biol Plant 50:457–460

    Article  Google Scholar 

  • Krahulcová A, Papoušková S, Krahulec F (2004) Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella). Hereditas 141:19–30

    Article  PubMed  Google Scholar 

  • Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44:281–306

    Article  Google Scholar 

  • Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J Jr (2004) The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a synthetic view. Preslia 76:223–243

    Google Scholar 

  • Krahulec F, Krahulcová A, Papoušková S (2006) Ploidy level selection during germination and early stage of seedling growth in the progeny of allohexaploid facultative apomict, Hieracium rubrum (Asteraceae). Folia Geobot 41:407–416

    Article  Google Scholar 

  • Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Schuhwerk F (2008) The structure of the agamic complex of Hieracium subgen. Pilosella in the Šumava Mts and its comparison with other regions in Central Europe. Preslia 80:1–26

    Google Scholar 

  • Loomis ES, Fishman L (2009) A continent-wide clone: population genetic variation of the invasive plant Hieracium aurantiacum (orange hawkweed; Asteraceae) in North America. Int J Plant Sci 170:759–765

    Article  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Matzk F (2000) Parthenogenesis in angiosperms. Bot Guideb 24:111–128

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Matzk F, Prodanovic S, Bäumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24

    Article  CAS  PubMed  Google Scholar 

  • Mráz P, Šingliarová B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot (Oxford) 101:59–71

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crisman HA, Darzynkiewicz Z (eds) Methods in cell biology 33. Academic Press, San Diego, pp 105–110

    Google Scholar 

  • Ozias-Akins P, Van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Peter A (1881) Vortrag über einige rotblühende Hieracien. Flora 64:123–126

    Google Scholar 

  • Rodrigues JCM, Koltunow AMG (2005) Epigenetic aspects of sexual and asexual seed development. Acta Biol Cracoviensia Ser Bot 47:37–49

    Google Scholar 

  • Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AMG (2008) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20:2372–2386

    Article  CAS  PubMed  Google Scholar 

  • Rotreklová O, Krahulcová A, Mráz P, Mrázová V, Mártonfiová L, Peckert T, Šingliarová B (2005) Chromosome numbers and breeding systems of some European species of Hieracium subgen. Pilosella. Preslia 77:177–195

    Google Scholar 

  • Rutishauser A (1967) Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. In: Alfert M et al (eds) Protoplasmatologia VI/F/3. Springer, Vienna & New York, pp 1–245

    Google Scholar 

  • Schuhwerk F (1996) Published chromosome counts in Hieracium. http://www.botanik.biologie.uni-muenchen.de/botsamml/projects/chrzlit.html. Accessed 17 March 2009

  • Sharbel TF, Voigt M-L, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas Ch, Schreiber F, Vogel H, Rotter B (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22:655–671

    Article  CAS  PubMed  Google Scholar 

  • Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Philos Trans R Soc Lond B 358:1095–1103

    Article  CAS  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335

    Article  Google Scholar 

  • Tucker MR, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504

    Article  Google Scholar 

  • Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL, Rossell JB, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

We thank Olga Rotreklová for her assistance in flow cytometric seed screening and in the field work, Ivana Plačková for isozyme analyses, and Uwe Raabe for providing seed material and organising the collection excursion. We also thank Stáňa Papoušková who provided us with some hybrid plants and Monika Flégrová for her assistance in statistical analysis. Radim Vašut and two anonymous reviewers are acknowledged for critical comments of the previous versions of the manuscript. This study was supported by the Czech Science Foundation (project no. 206/08/0890) and by long-term institutional research plan AVOZ60050516 from the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Krahulcová.

Additional information

Communicated by Thomas Dresselhaus.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahulcová, A., Krahulec, F. & Rosenbaumová, R. Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae). Sex Plant Reprod 24, 63–74 (2011). https://doi.org/10.1007/s00497-010-0152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-010-0152-x

Keywords

Navigation