Skip to main content
Log in

Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae)

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

We have analysed the distribution of epigenetic marks for histone modifications at lysine residues H3 and H4, and DNA methylation, in the nuclei of mature pollen cells of the Angiosperm tree Quercus suber; a monoecious wind pollinated species with a protandrous system, and a long post-pollination period. The ultrasonic treatment developed for the isolation of pollen nuclei proved to be a fast and reliable method, preventing the interference of cell wall autofluorescence in the in situ immunolabelling assays. In contrast with previous studies on herbaceous species with short progamic phases, our results are consistent with a high level of silent (5-mC and H3K9me2) epigenetic marks on chromatin of the generative nucleus, and the prevalence of active marks (H3K9me3 and H4Kac) in the vegetative nucleus. The findings are discussed in terms of the pollination/fertilization timing strategy adopted by this plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett M, Leitch I (2004) Angiosperm DNA c-values database, release 5.0, Dec 2004. http://www.kew.org/cval/homepage.html

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Tuyl JM, De Vries JN (1990) Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot 65:3–8

    CAS  Google Scholar 

  • Boavida LC, Varela MC, Feijó JA (1999) Sexual reproduction in the cork oak (Quercus suber L.). I. The progamic phase. Sex Plant Reprod 11:347–353

    Article  Google Scholar 

  • Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison JS (1999) 5-Methylcytosine distribution and genome organization in Triticale before and after treatment with 5-azacytidine. J Cell Sci 112:4397–4404

    PubMed  CAS  Google Scholar 

  • Craiq JM (2005) Heterochromatin-many flavours, common themes. Bioessays 27:17–28

    Article  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns––from conservation to diversity. Trends Plant Sci 11:199–208

    Article  PubMed  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2006) Heterochromatin assembly: a new twist on an old model. Chromosome Res 14:83–94

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  PubMed  CAS  Google Scholar 

  • Janousek B, Zluvova J, Vyskot B (2000) Histone H4 acetylation and DNA methylation dynamics during pollen development. Protoplasma 211:116–122

    Article  CAS  Google Scholar 

  • Janousek B, Matsunaga S, Kejnovsky E, Zluvova J, Vyskot B (2002) DNA methylation analysis of a male reproductive organ specific gene (MROS1) during pollen development. Genome 45:930–937

    Article  PubMed  CAS  Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    Article  PubMed  CAS  Google Scholar 

  • Jasencakova Z, Meister A, Schubert I (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110:83–92

    Article  PubMed  CAS  Google Scholar 

  • Jasencakova Z, Soppe WJ, Turner BM, Schubert I (2003) Histone modifications in Arabidopsis-high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:471–480

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  PubMed  CAS  Google Scholar 

  • Oakeley J, Podesta A, Jost JP (1997) Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci 94:11721–11725

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Singh MB, Bhalla PL (2006) Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen. Plant Mol Biol 62:503–512

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Singh MB, Bhalla PL (2007) Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Rep 26:1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Zhou Y, Fowke LC, Wang H (2004) An efficient method for flow cytometric analysis of pollen and detection of 2n nuclei in Brassica napus pollen. Plant Cell Rep 23:196–202

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford, p 203

    Google Scholar 

  • Tanaka I (1997) Differentiation of generative and vegetative cells in angiosperm pollen. Sex Plant Reprod 10:1–7

    Article  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16:S107–S118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andreas Houben (Leibniz Institute of Plant Genetics and Crop Plant Research) for kindly providing antibody against H3K9Ac. We are grateful to Augusta Barão for excellent technical assistance and Xana Castilho for her involvement with the manuscript. We also wish to thank Prof Neil Jones for his critical revision of the manuscript and editing of English. TR was supported by Fundação para a Ciência e Tecnologia with grant SFRH/BD/13319/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Ribeiro.

Additional information

Communicated by Thomas Dresselhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, T., Viegas, W. & Morais-Cecílio, L. Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae). Sex Plant Reprod 22, 1–7 (2009). https://doi.org/10.1007/s00497-008-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-008-0083-y

Keywords

Navigation