Skip to main content
Log in

Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Key message

Improving pollen embryogenesis.

Abstract

Despite the agro-economic importance of pollen embryogenesis, the mechanisms underlying this process are still poorly understood. We describe the dynamics of chromatin modifications (histones H3K4me2, H3K9ac, H3K9me2, and H3K27me3) and chromatin marks (RNA polymerase II CDC phospho-Ser5, and CENH3) during barley pollen embryogenesis. Immunolabeling results show that, in reaction to stress, immature pollen rapidly starts reorganizing several important chromatin modifications indicative of a change in cell fate. This new chromatin modification pattern was accomplished within 24 h from whereon it remained unaltered during subsequent mitotic activity. This indicates that cell fate transition, the central element of pollen embryogenesis, is completed early on during the induction process. Application of the histone deacetylase inhibitor trichostatin A stimulated pollen embryogenesis when used on pollen with a gametophytic style chromatin pattern. However, when this drug was administered to embryogenic pollen, the chromatin markers reversed toward a gametophytic profile, embryogenesis was halted and all pollen invariably died.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D, Dynlacht BD (2007) Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol 179:1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank T, Trendelenburg M, Kleinschmidt J (1992) Reactivation of DNA replication in erythrocyte nuclei by Xenopus egg extract involves energy-dependent chromatin decondensation and changes in histone phosphorylation. Exp Cell Res 202:224–232

    Article  CAS  PubMed  Google Scholar 

  • Borkird C, Choi JH, Jin ZH, Franz G, Hatzopoulos P, Chorneau R, Bonas U, Pelegri F, Sung ZR (1988) Developmental regulation of embryonic genes in plants. Dev Biol 85:6399–6403

    CAS  Google Scholar 

  • Braszewska-Zalewska AJ, Wolny EA, Smialek L, Hasterok R (2013) Tissue-specific epigenetic modifications in root apical meristem cells of Hordeum vulgare. PLoS ONE 8(7):e69204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6:176–184

    Article  CAS  PubMed  Google Scholar 

  • Coronado M-J, Hensel G, Broeders S, Otto I, Kumlehn J (2005) Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol Plant 27:591–599

    Article  CAS  Google Scholar 

  • Daghma DS (2011) Structural changes during the initiation of pollen embryogenesis in barley (Hordeum vulgare L.). Dissertation, Martin-Luther-University Halle-Wittenberg, Germany

  • Daghma DS, Kumlehn J, Hensel G, Rutten T, Melzer M (2012) Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L.). J Exp Bot 63:6017–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daghma DS, Hensel G, Rutten T, Melzer M, Kumlehn J (2014) Cellular dynamics during early pollen embryogenesis revealed by time-lapse imaging. Front Plant Sci. doi:10.3389/fpls.2014.00675

    PubMed  PubMed Central  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Phys 48:223–250

    Article  CAS  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  • Grafi G (2004) How cells dedifferentiate: a lesson from plants. Dev Biol 268:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra S, van Zijderveld MH, Louwerse JD, Heidekamp F, van der Mark F (1992) Anther and Microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86:89–96

    Article  CAS  Google Scholar 

  • Houben A, Kumke K, Nagaki K, Hause G (2011) CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chrom Res 19:471–480

    Article  CAS  PubMed  Google Scholar 

  • Indrianto A, Heberle-Bors E, Touarev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci 143:71–79

    Article  CAS  Google Scholar 

  • Karantzali K, Schulz H, Hummel O, Hubner N, Hatzopoulos AK, Kretsovali K (2008) Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis. Genome Biol 9:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp MG, Ghosh M, Liu G, Leffak M (2005) The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 33:325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  CAS  PubMed  Google Scholar 

  • Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hart SRL, Skalnik DG (2004) Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38:32–38

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Butenko Y, Grafi G (2005) Histone deacetylation is required for progression through mitosis in tobacco cells. Plant J 41:346–352

    Article  CAS  PubMed  Google Scholar 

  • Li H, Soriano M, Cordewener J, Muiño JM, Riksen T, Fukuoka H, Angenent GC, Boutilier K (2014) The histone deacetylase inhibitor Trichostatin A promotes totipotency in the male gametophyte. Plant Cell 113:116491

    Google Scholar 

  • Liang G, Zhang G (2013) Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23:49–69

    Article  CAS  PubMed  Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc ROC 25:148–157

    CAS  Google Scholar 

  • Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB, Schübeler D (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7:e1002090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wing A, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  CAS  PubMed  Google Scholar 

  • Maalouf WE, Liu Z, Brochard V, Renard JP, Debey P, Beaujean N, Zink D (2009) Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  • McCool KW, Xu X, Singer DB, Murdoch FE, Fritsch MK (2007) The role of histone acetylation in regulating early gene expression patterns during early embryonic stem cell differentiation. J Biol Chem 282:6696–6706

    Article  CAS  PubMed  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3715–3725

    Article  Google Scholar 

  • Murphy JP, McAleer JP, Uglialoro A, Papile J, Weniger J, Bethelmie F, Tramontano WA (2000) Histone deacetylase inhibitors and cell proliferation in pea root meristems. Phytochemistry 55:11–18

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Lee TH, Lee BC (2012) Trichostatin A improves preimplantation development of bovine cloned embryos and alters expression of epigenetic and pluripotency genes in cloned blastocysts. J Vet Med Sci 74:1409–1415

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Houben A, Kumlehn J, Melzer M, Rutten T (2013) Chromatin alterations during pollen development in Hordeum vulgare. Getogenet Genome Res 141:50–57

    Article  CAS  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    Article  CAS  PubMed  Google Scholar 

  • Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plant 111:1–8

    Article  CAS  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19:1037–1045

    Article  CAS  Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ, Allfrey VG (1975) Processing of newly synthesized histone molecules. Science 190:117–128

    Article  CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:498–505

    Article  Google Scholar 

  • Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18:1263–1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycombgroup proteins. Curr Opin Plant Biol 8:553–561

    Article  CAS  PubMed  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  Google Scholar 

  • Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S (2016) Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar “Svilena”. BMC Plant Biol 16:97. doi:10.1186/s12870-016-0782-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Solís M-T, Rodríguez-Serrano M, Meijón M, Cañal M-J, Cifuentes A, Risueño MC, Testillano PS (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63:6431–6444

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano M, Cistué L, Castillo A (2008) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27:805–811

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity pattern in culture. Plant Reprod 26:181–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16:5719–5735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traas JA, Doonan JH, Rawlins D, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the division cycle of carrot cells: actin co-distributes with the four microtubule arrays. J Cell Biol 105:387–3965

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Verdin N, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Ware CB, Wang L, Mecham BH, Shen L, Nelson AM, Bar M, Lamba DA, Dauphin DS, Buckingham B, Askari B, Lim R, Tewari M, Gartler SM, Issa JP, Pavlidis P, Duan Z, Blau CA (2009) Histone deacetylase inhibition elicits an evolutionarily conserved self renewal program in embryonic stem cells. Cell Stem Cell 4:359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodland HR, Adamson ED (1977) The synthesis and storage of histones during the oogenesis of Xenopus laevis. Dev Biol 57:118–135

    Article  CAS  PubMed  Google Scholar 

  • Wu RS, Kohn KW, Bonner WM (1981) Metabolism of ubiquitinated histones. J Biol Chem 256:5916–5920

    CAS  PubMed  Google Scholar 

  • Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156:346–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jönsson H, Reddy GV (2013) Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 9:654. doi:10.1038/msb.2013.8

    Article  PubMed  PubMed Central  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    Article  CAS  PubMed  Google Scholar 

  • Zheng MY, Liu W, Weng Y, Polle E, Konzak CF (2001) Culture of freshly isolated wheat (Triticum aestisum L.) microspores treated with inducer chemicals. Plant Cell Rep 20:685–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Katrin Kumke, Ingrid Otto and Monika Wiesner for excellent technical support and Dr. Marek Marzec for helpful discussions. The first author was supported by the Siemens/DAAD (Deutscher Akademischer Austauschdienst) postgraduate program with Grant A/11/71982.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Twan Rutten.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dolf Weijers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Daghma, D.S., Houben, A. et al. Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A. Plant Reprod 30, 95–105 (2017). https://doi.org/10.1007/s00497-017-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-017-0302-5

Keywords

Navigation