Skip to main content
Log in

Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Highly fertile F1 hybrids were made between Triticum turgidum L. ssp. turgidum (2n = 28, AABB) and Aegilops tauschii Coss. (2n = 14, DD) without embryo rescue and hormone treatment. The F1 plants had an average seed set of 25%. Approximately 96% of the F2 seeds were able to germinate normally and about 67% of the F2 plants were spontaneous amphidiploid (2n = 42, AABBDD). Cytological analysis of male gametogenesis of the F1 plants showed that meiotic restitution is responsible for the high fertility. A mitosis-like meiosis led to meiotic restitution at either of the two meiotic divisions resulting in unreduced gametes. Test crosses of the T. t. turgidumAe. tauschii amphidiploid with Ae. variabilis and rye suggested that the mitosis-like meiosis is controlled by one or more nuclear genes that continue to function in derived lines. This discovery indicates a potential application of such genes in producing double haploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aase HC (1930) Cytology of Triticum, Secale, and Aegilops hybrids with reference to phylogeny. Res Stud State Coll Wash 2:5–60

    Google Scholar 

  • Balatero CH, Darvey NL (1993) Influence of selected wheat and rye genotypes on the direct synthesis of hexaploid triticale. Euphytica 66:179–185

    Article  Google Scholar 

  • Blanco A, Simeone R, Tanzarella OA (1983) Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theor Appl Genet 64:333–337

    Article  Google Scholar 

  • Chauhan KPS, Patel MZ (1978) Crossability of wheat-rye haploids with hexaploid triticale. In: Proceedings of the fifth international wheat genetics symposium, New Delhi, India, 23–28 February, pp 1154–1160

  • Darvey NL, Durvasula (1980) Chromosome pairing and restitution in wheat-rye amphihaploids. In: Proceedings of the second international conference on rye and triticale, Poznan, Poland, 11–14 May 1980, pp 67–68 (abstract)

  • David JL, Benavente E, Brès-Patry C, Dusautoir JC, Echaide M (2004) Are neopolyploids a likely route for a transgene walk to the wild? The Aegilops ovata × Triticum turgidum durum case. Biol J Linn Soc 82:503–510

    Article  Google Scholar 

  • Fukuda K, Sakamoto S (1992a) Studies on the factors controlling the formation of unreduced gametes in hybrids between tetraploid emmer wheats and Ae. squarrosa L. Jpn J Breed 42:747–760

    Google Scholar 

  • Fukuda K, Sakamoto S (1992b) Cytological studies on unreduced male gamete formation in hybrids between tetraploid emmer wheats and Ae. squarrosa L. Jpn J Breed 42:255–266

    Google Scholar 

  • Gupta PK, Priyadarshan PM (1982) Triticale: present status and future prospects. Adv Genet 21:255–345

    Google Scholar 

  • Han JH, Ren X, Fan L, Gao JL (1996) The comparative studies of the crossability of rye (Secale cereale) and Aegilops onto wheat (Triticum aestivum). J Ningxia Agric Coll 17:35–39

    Google Scholar 

  • Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Jauhar PP, Dogramaci-Altuntepe M, Peterson TS, Almouslem AB (2000) Seedset on synthetic haploid of durum wheat: cytological and molecular investigations. Crop Sci 40:1742–1749

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1980) Meiotic restitution in wheat barley hybrids. Chromosoma 68:252–261

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (abstr) (in Japanese). Agric Hortic 19:889–890

    Google Scholar 

  • Kihara H, Lilienfeld F (1949) A new synthesized 6×-wheat. Hereditas (suppl): 307–319

  • Krowlow KD (1970) Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z Pflanzenzücht 64:44–72

    Google Scholar 

  • Lein A (1943) Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. I Ind Abst Vererb Lehre 81:28–61

    Article  Google Scholar 

  • Liu DC, Yen C, Yang JL, Zheng YL, Lan XJ (1999a) The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108:79–82

    Article  Google Scholar 

  • Liu DC, Yen C, Yang JL, Luo MC, Yang WY (1999b) Evaluation of crosses of bread wheat cv. Kaixianluohanmai with alien speices. Acta Agron Sin 25:777–780

    Google Scholar 

  • Liu DJ, Chen PD, Wu PL, Wang YN, Qiu BX, Wang SL (1986) Triticum durum–Hynaldia villosa amphidiploid. Acta Agron Sin 12:155–162

    Google Scholar 

  • Liu DC, Lan XJ, Yang ZJ, Zheng YL, Wei YM, Zhou YH (2002) A unique Aegilops tauschii genotype needless to immature embryo culture in cross with wheat. Acta Bot Sin 44:708–713

    Google Scholar 

  • Luo MC, Yen C, Yang JL (1989) The crossability of landraces of common wheat in Sichuan with Aegilops tauschii and rye. J Sichuan Agric Univ 7:77–81

    Google Scholar 

  • Ma R, Zheng DS, Fan L (1996) The crossability percentages of 96 bread wheat landraces and cultivars from Japan with rye. Euphytica 92:301–306

    Google Scholar 

  • Maan SS, Sasakuma T (1977) Fertility of amphihaploids in Triticinae. J Hered 57:76–83

    Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    Article  PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499

    PubMed  CAS  Google Scholar 

  • Pignone D (1993) Non-reductional meiosis in Triticum durum × Aegilops longissima hybrid and in backcross of its amphiploid with T. turgidum (Poaceae). Plant Syst Evol 187:127–134

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Article  Google Scholar 

  • Rosenberg O (1927) Die Semiheterotypische Teilung und Ihre Bedeutung für die Entstehung verdoppelter Chromozomenzahlen. Hereditas 8:305–358

    Article  Google Scholar 

  • Stefani A, Meletti P, Onnis A (1983) New data on the experimental intergeneric hybrid Triticum durum Desf. × Haynaldia villosa (L.) Schur. Z. Pflanzenzuecht 90:236–242

    Google Scholar 

  • Tanaka M (1959) Newly synthesized amphidiploids from the hybrids, Emmer wheats × Aegilops squarrosa varieties. Wheat Inf Serv 8:8

    Google Scholar 

  • Tanaka M (1961) New amphidiploids, synthesized 6×-wheats, derived from Emmer wheat × Aegilops squarrosa. Wheat Inf Serv 12:11

    Google Scholar 

  • Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97:1076–1082

    Article  CAS  Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp 88–94

    Google Scholar 

  • Werner JE, Peloquin SJ (1991) Occurrence and mechanisms of n egg formation in 2× potato. Genome 34:975–982

    Google Scholar 

  • Xu SJ, Dong YS (1989) Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var. darginicum and Aegilops tauschii Cosson. Acta Agron Sin 15:251–259

    Google Scholar 

  • Xu SJ, Dong YS (1992) Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome 35:379–384

    Google Scholar 

  • Xu SJ, Joppa LR (1995) Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome 38:607–615

    PubMed  CAS  Google Scholar 

  • Xu SJ, Joppa LR (2000) First division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed 119:233–241

    Article  Google Scholar 

  • Yen C, Yang JL (1999) Triticeae biosystematics: TriticumAegilops complex. Chinese Agricultural Press, Beijing, pp 104–108

    Google Scholar 

  • Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China C Life Sci 47:553–561

    Article  PubMed  CAS  Google Scholar 

  • Zheng YL, Luo MC, Yen C, Yang JL (1992) Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv 75:36–40

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Chinese Ministry of Education: New Century Excellent Talents in University (NCET-04-0908), the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Changjiang Scholars and Innovative Research Team in University (IRT0453), and by the South Dakota State University Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yen or Deng-Cai Liu.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LQ., Yen, Y., Zheng, YL. et al. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20, 159–166 (2007). https://doi.org/10.1007/s00497-007-0052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-007-0052-x

Keywords

Navigation