Skip to main content
Log in

Study of fertility and cytogenetic variability in androgenic plants (R0 and R1) of the alloplasmic introgression lines of common wheat

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Anther culture is one of the methods for obtaining doubled haploid (DH) lines of wheat, widely used in genetics and breeding. The cytogenetic instability in R0 plants, leading to a decrease in fertility or sterility, can be a limitation of this method. In this study, we have investigated the fertility of R0 and the fertility and cytogenetic variability of R1 in the alloplasmic introgression lines of common wheat in order to develop cytogenetically stable DH lines with introgressions from different species. Lines 311/134, 311/FL, and 311/IR with the cytoplasm from H. vulgare were studied. The 311/134 line carries the wheat–rye 1RS.1BL and the wheat–wheatgrass 7DL-7Ai translocations; the 311/FL line has the 1RS.1BL translocation and probably introgressions from A. glaucum; and the 311/IR line has the wheat–rye 1RS.1BL and wheat–Ae. speltoides T2B/2S#2 translocations. Green seedlings developed in the anther culture of all the lines. The differences between the lines in their ability for androgenesis and in the level of fertility in R0 and R1 have been revealed. Depressed androgenesis, low fertility, and high aneuploidy were observed in 311/IR. It has been proposed that the reason for this is the cytogenetic instability of the gametes, caused by the Gc genes located on T2B/2S#2. Among the 311/134 and 311/FL R1 plants, grown from low seed-set R0 plants, 63.3% were aneuploids. Fertile R0 regenerant plants that segregated in R1 by fertility and chromosome numbers were identified. It was demonstrated that the DH lines are best developed from high-fertility R1 plants with 2n = 42 and a high fertility level, irrespective of the fertility level of R0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnabas, B., Szakacs, E., Karsai, I., and Bedö, Z., In vitro androgenesis of wheat: From fundamental to practical application, Euphytica, 2001, vol. 211-216, no. 1, pp. 211–216.

    Article  Google Scholar 

  • Belan, I., Rosseeva, L., Laikova, L., Rosseev, V., Pershina, L., Trubacheeva, N., Morgounov, A., and Zelenskiy, Y., Utilization of new wheat genepool in breeding of spring bread wheat, Proc. 8th Int. Wheat Conference, St. Petersburg, 2010, pp. 69–70.

    Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Meshkova, L.V., Shepelev, S.S., and Zelenski., Yu.I., Immunological assessment of the material KASIB in the conditions of southern forest-steppe of Western Siberia, Vestn. Altai. Gos. Agrar. Univ., 2012b.

    Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Rosseev, V.M., Badaeva, E.D., Zelenskii, Yu.I., Blokhina, N.P., Shepelev, S.S., and Pershina, L.A., Examination of adaptive and agronomic characters in lines of common wheat omskaya 37 bearing translocations 1RS.1BL and 7DL-7Ai, Vavilovskii Zh. Genet. Sel., 2012a, vol. 16, no. 1, pp. 178–186.

    Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Rosseev, V.M., Badayeva, E.D., Zelensky, Yu.I., Blochina, N.P., Shepelev, S.S., and Pershina, L.A., Examination of adaptive and agronomic characters in lines of common wheat omskaya 37 bearing translocations 1RS.1BL and 7DL-7Ai, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 1, pp. 41–47. doi 10.1134/S2079059715010037

    Article  CAS  Google Scholar 

  • Chuang, C.C., Ouyang, J.W., Chia, H., Chou, S.M., and Ching, C.K., A set of potato media for wheat anther culture, Proc. Symp. Plant Tissue Culture. Peking, 1978, pp. 51–56.

    Google Scholar 

  • Forster, B.P. and Thomas, W.T.B., Doubled haploids in genetics and plant breeding, Plant Breed. Rev., 2005, vol. 25, pp. 57–88. doi 10.1002/9780470650301.ch3

    CAS  Google Scholar 

  • Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, no. 1, pp. 59–87.

    Article  Google Scholar 

  • Gamborg, O.L. and Eveleigh, D.E., Culture methods and detection of glucanases in suspension cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Germana, M.A., Gametic embryogenesis and haploid technology as valuable support to plant breeding, Plant Cell Rep., 2011, vol. 30, no. 5, pp. 839–857. doi 10.1007/s00299-011-1061-7

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S.K., Charpe, A., Prabhu, K.V., and Haque, Q.M., Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat, Theor. Appl. Genet., 2006, vol. 113, no. 6, pp. 1027–1036. doi 10.1007/s00122-006-0362-7

    Article  CAS  PubMed  Google Scholar 

  • Hu, H. and Huang, B., Application of pollen-derived plants to crop improvement, Int. Rev. Cytol., 1987, vol. 107, pp. 293–313. doi 10.1016/S0074-7696(08)61079-7

    Article  Google Scholar 

  • Hussain, B., Khan, M.A., Ali, Q., and Shaukat, S., Double haploid production is the best method for genetic improvement and genetic studies of wheat?, Int. J. Agro Veter. Med. Sci., 2012, vol. 6, no. 4, pp. 216–228.

    Google Scholar 

  • Jane, A. and Lorz, H., Cereal microspore culture, Plant Sci., 1995, vol. 109, no. 1, pp. 1–12.

    Article  Google Scholar 

  • Joshi, R.K. and Nayak, S., Gene pyramiding—a broad spectrum technique for developing durable stress resistance in crop, Biotechnol. Mol. Biol. Rev., 2010, vol. 5, no. 3, pp. 51–60.

    CAS  Google Scholar 

  • Konieczny, R., Czaplicki, A.Z., Golczyk, H., and Przywara, L., Two pathways of plant regeneration in wheat anther culture, Plant Cell Tissue Organ Cult., 2003, vol. 73, no. 2, pp. 177–187.

    Article  CAS  Google Scholar 

  • Liu, S., Yu, L.-X., Singh, R.P., Jin, Y., Sorrels, M.E., and Anderson, J.A., Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26, Theor. Appl. Genet., 2010, vol. 120, no. 4, pp. 691–697. doi 10.1007/s00122-009-1186-z

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Zheng, M.Y., Polle, E.A., and Konzak, C.F., Highly efficient doubled haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis, Crop Sci., 2002, vol. 42, no. 3, pp. 686–692.

    Article  Google Scholar 

  • Mago, R., Spielmeyer, W., Lawrence, J., Lagudah, S., Ellis, G., and Pryor, A., Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines, Theor. Appl. Genet., 2002, vol. 104, no. 8, pp. 1317–1324. doi 10.1007/s00122-002-0879-3

    Article  CAS  PubMed  Google Scholar 

  • Marais, G.F., Bekker, T.A., Eksteen, A., McCallum, B., Fetch, T., and Marais, A.S., Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides, Euphytica, 2010, vol. 171, no. 1, pp. 71–85. doi 10.1007/s10681-009-9996-2

    Article  CAS  Google Scholar 

  • Nasuda, S., Friebe, B., and Gill, B.S., The morphology of the chromosome fragments suggests that the Gc genes induce chromosome breaks in the G1 phase prior to DNA synthesis of the first postmeiotic mitosis, Genetics, 1998, vol. 149, no. 2, pp. 1115–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niroula, R.K. and Bimb, H.P., Overview of wheat × maize system of crosses for dihaploid induction in wheat, World Appl. Sci. J., 2009, vol. 7, no. 8, pp. 1037–1045.

    CAS  Google Scholar 

  • Oleszczuk, S., Rabiza-Swider, J., Zimny, J., and Lukaszewski, A.J., Aneuploidy among androgenic progeny of hexaploid triticale (×Triticosecale wittmack), Plant Cell Rep., 2011, vol. 30, no. 4, pp. 575–586. doi 10.1007/s00299-010-0971-0

    Article  CAS  PubMed  Google Scholar 

  • Oleszczuk, S., Tyrka, M., and Zimny, J., The origin of clones among androgenic regenerants of hexaploid triticale, Euphytica, 2014, vol. 198, no. 3, pp. 325–336.

    Article  CAS  Google Scholar 

  • Osadchaya, T.S., Pershina, L.A., Trubacheeva, N.V., Belan, I.A., Rosseeva, L.P., and Devyatkina, E.P., Androgenesis ability in common wheat euplasmic lines and alloplasmic recombinant lines (H. vulgare)–T. aestivum possessing 1RS.1BL and 7DL-7Ai translocations and production of double haploid lines, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 3, pp. 174–181. doi 10.1134/S2079059715030132

    Article  CAS  Google Scholar 

  • Pershina, L.A., Osadchaya, T.S., Badaeva, E.D., Belan, I.A., and Rosseeva, L.P., Features of androgenesis in anther cultures of varieties and a promising accession of spring common wheat bred in West Siberia differing in the presence or absence of wheat-alien translocations, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 4, pp. 246–253. doi 10.1134/S2079059713040096

    Article  Google Scholar 

  • Sibikeev, S.N., Voronina, S.A., Badaeva, E.D., and Druzhin, A.E., Study of resistance to leaf and stem rust in Triticum aestivumAegilops speltoides lines, Vavilovskii Zh. Genet. Sel., 2015, vol. 19, no. 2, pp. 165–170.

    Google Scholar 

  • Sibikeev, S.N., Voronina, S.A., Badaeva, E.D., and Druzhin, A.E., Study of resistance to leaf and stem rust in Triticum aestivumAegilops speltoides lines, Russ. J. Genet.: Appl. Res., 2016, vol. 6, no. 4, pp. 351–356. doi 10.1134/S2079059716040183

    Article  CAS  Google Scholar 

  • Sibikeev., Yu.E., Sibikeev, S.N., and Krupnov, V.A., The effect of Lr19-translocation on in vitro androgenesis and inheritance of leaf-rust resistance in DH3 lines and F2 hybrids of common wheat, Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1003–1006.

    Article  Google Scholar 

  • Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage mapping of genes for resistance to leaf, steam and stripe rust and -secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, pp. 609–616. doi 10.1007/BF00224219.pmid:24221066

    Article  CAS  PubMed  Google Scholar 

  • Sinha, P., Tomar, S.M., Vinod Singh V.K., and Balyan, H.S., Genetic analysis and molecular mapping of a new fertility restorer gene Rf8 for Triticum timopheevi cytoplasm in wheat (Triticum aestivum L.) using SSR markers, Genetica, 2013, vol. 141, nos. 10-12, pp. 431–341. doi 10.1007/s10709-013-9742-5

    Article  CAS  PubMed  Google Scholar 

  • Stepochkin, P.I., Ponomarenko, V.I., Pershina, L.A., Osadchaya, T.S., and Trubacheeva, N.V., Using remote hybridization for creation of winter wheat breeding material, Dostizh. Nauki Tekh. APK, 2012, vol. 6, pp. 37–38.

    Google Scholar 

  • Tersi, M., Xynias, I.N., Gouli-Vadinoudi, E., and Roupakias, D.G., Anther culture response of F1 durum bread wheat hybrids after colchicines, Plant Breed., 2006, vol. 125, no. 5, pp. 457–460. doi 10.1111/j.1439-0523.2006.01285.x

    Article  Google Scholar 

  • Veilleux, R.E., Gametoclonal variation in crop plants, Current Plant Sci. Biotechnol. Agric., 1998, vol. 32, pp. 123–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pershina.

Additional information

Original Russian Text © T.S. Osadchaya, N.V. Trubacheeva, L.A. Kravtsova, I.A. Belan, L.P. Rosseeva, L.A. Pershina, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 3, pp. 370–377.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osadchaya, T.S., Trubacheeva, N.V., Kravtsova, L.A. et al. Study of fertility and cytogenetic variability in androgenic plants (R0 and R1) of the alloplasmic introgression lines of common wheat. Russ J Genet Appl Res 7, 318–326 (2017). https://doi.org/10.1134/S2079059717030121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030121

Keywords

Navigation