Abstract
We show that if a finite point set \(P\subseteq {\mathbb {R}}^2\) has the fewest congruence classes of triangles possible, up to a constant M, then at least one of the following holds.

There is a \(\sigma >0\) and a line l which contains \(\Omega (P^\sigma )\) points of P. Further, a positive proportion of P is covered by lines parallel to l each containing \(\Omega (P^\sigma )\) points of P.

There is a circle \(\gamma \) which contains a positive proportion of P.
This provides evidence for two conjectures of Erdős. We use the result of Petridis–Roche–Newton–Rudnev–Warren on the structure of the affine group combined with classical results from additive combinatorics.
Similar content being viewed by others
1 Introduction
Let P be a finite point set in \({\mathbb {R}}^2\). Erdős’ famous distance conjecture [10] asks what the minimum number of distinct distances such a set can describe. This has lead to many beautiful techniques over 64 years culminating in the 2010 solution of Guth and Katz [14].
Erdős also posed much harder problems attempting to understand the structure of sets that determine few distinct distances. To provide context for these, suppose we have a square \(\sqrt{N} \times \sqrt{N}\) lattice. A classical result of Landau [18] on the growth of sums of squares shows that such a lattice gives \(\Theta (N/\sqrt{\log N})\) distinct distances. One can find other lattices that give the same number of distances, but there are no known constructions which give fewer distances. We call a point set P that has \(cP/\sqrt{\log P}\) distances a nearoptimal point set. Erdős’ conjectures [8] concern the structure of such nearoptimal sets. The hardest such question is:
Question 1.1
(Erdős) Do all nearoptimal point sets have a lattice structure?
Erdős admitted that “I really have no idea and the problem is perhaps too vaguely stated.” Erdős suggests that it would be nice to see if a nearoptimal point set P must contain at least \(P^{1/2}\) points on a common line. This conjecture also appears too hard. The first bound due to Szemerédi (communicated by Erdős [11]) showed there must be a line containing at least \(\sqrt{\log P}\) points of P. Using KőváriSósTurán [17] this can be improved to at least \(\log P\) points, see [30]. There is a weaker version of Erdős’ line question that is still open.
Question 1.2
(Erdős) Prove or disprove: For a sufficiently small \(\varepsilon >0\), every nearoptimal point set P contains at least \(cP^\varepsilon \) points on a common line.
Lund, Sheffer and de Zeeuw [19] used bisector energy to show for any \(0<\sigma \le 1/4\) there is either a line or circle containing \(cP^\sigma \) points of P, or there are \(cP^{8/512\sigma /5\varepsilon }\) lines each containing at least \(c\sqrt{\log P}\) points of P. There has been recent work on the converse problem: lines, circles and constant degree polynomials cannot have too large an intersection with a nearoptimal set [21, 24, 31]. By combining these three results, we obtain that for every nearoptimal set P, every constantdegree algebraic curve contains at most \(cP^{43/52}\) points of P.
One possible approach, suggested by Nets Katz, is to show that the additive energy of a nearoptimal point set is large [29, Problem 34]. Following this philosophy, Hanson [15], RocheNewton [25] and Pohoata [23] demonstrate that nearoptimal Cartesian products have small difference sets.
Since the introduction of the Guth–Katz–Elekes–Sharir framework [7, 14], it has been productive to view distinct distances as congruence classes of pairs of points \((p,q)\in P^2\) under the action of the group of rigid motions on \({\mathbb {R}}^2\). This was essential to the GuthKatz [14] result which showed a point set P has \(\Omega \left( P/\log P\right) \) distinct distances. One can think of classes of congruent triangles as the congruence classes of triples of points (p, q, r) under the same action. This perspective was used by Rudnev [26] to show that a point set P describes at least \(\Omega (P^2)\) distinct classes of congruent triangles (see Fig. 1).
Like with distances, we can see that Rudnev’s lower bound is sharp by looking at the \(\sqrt{N} \times \sqrt{N}\) integer lattice. There are two further examples for triangles: points in an arithmetic progression on a line; or vertices of a regular polygon (see Fig. 2).
One can also generalise these examples, by repeating them O(1) times. If P is on O(1) parallel lines with the same arithmetic progression on each then P defines \(\Theta (P^2)\) congruence classes of triangles. Similarly, if P is on O(1) concentric circles with points lying at a vertex of a scaled version of the same polygon, then we have few classes of congruent triangles.
We consider point sets with few classes of congruent triangles. We can prove much stronger structural results in this setting than those known for distances. Before we describe our result we formalise our assumption. Rudnev’s sharp lower bound gives us the following definition for trianglenearoptimal point sets.
Definition 1.3
We say a finite point set P in \({\mathbb {R}}^2\) is trianglenearoptimal if, for some constant M, P describes at most \(MP^2\) classes of congruent triangle.
We show that all trianglenearoptimal sets are similar to the above examples in two ways: Theorem 1.4 gives us the geometric similarity. Corollary 4.4 shows that all triangle near optimal sets have strong additive or multiplicative structure, similar to the above examples.
Theorem 1.4
Suppose we have a finite point set P in \(\mathbb {R}^2\). Let M be a positive constant and let \(c, c'\) and C be positive constants that depend only on M. If P contains \(MP^2\) classes of congruent triangles (trianglenearoptimal) then either

There is a line l which contains \(cP^\sigma \) points of P for some \(0<\sigma \le 1\). Further, a positive proportion of P is covered by lines parallel to l each containing \(c'P^\sigma \) points of P.

There is a circle \(\gamma \) which contains CP points of P.
We also give sharp energy bounds for such sets, see the slightly more general Theorem 1.6 below.
Theorem 1.4 solves Question 1.2 of Erdős for sets with few classes of congruent triangles. Unfortunately, while triangles and distances are similar from the point of view of rigid motions, we cannot prove a direct relationship between sets with few triangles and those with few distances. This leads to the following question, a positive answer to which would fully resolve Question 1.2 of Erdős.
Question 1.5
Let P be a finite point set in \({\mathbb {R}}^2\) with at most \(cP/\sqrt{\log P}\) distinct distances. Does P describe at most \(MP^2\) classes of congruent triangles for some constant M? The constant M may depend on c.
We will discuss how our methods fail to answer this question after describing the proof of Theorem 1.4 (see Question 1.7). The proof of Theorem 1.4 consists of several steps combining the Elekes–Sharir–Guth–Katz framework and structure of the affine group with the traditional tools of Balog–Szemerédi–Gowers and the Freimantype result of Green and Ruzsa from additive combinatorics. Before we outline the proof, we need to introduce some useful notions.
Let P be a finite point set in \({\mathbb {R}}^2\), M a positive constant (constants do not grow with P). We consider the set of classes of congruent triangles determined by P, defined as
To apply the tools from additive combinatorics, we interpret additive structure in P using the additive energy of P. The additive energy is defined as
To interpret multiplicative structure, we identify \({\mathbb {R}}^2\) with \({\mathbb {C}}\) in the usual way, so that we can think of P as a subset of \({\mathbb {C}}\). This allows us to define the multiplicative energy of P as
This identification also allows us to interpret the group of rigid motions on \({\mathbb {R}}^2\), which we denote by \(\text {SE}_2({\mathbb {R}})\), as a subgroup of the affine group on \({\mathbb {C}}\), denoted \(\text {Aff}({\mathbb {C}})\). For technical calculations we use the isomorphism \( \text {Aff}({\mathbb {C}}) \cong {\mathbb {C}}^\times \ltimes {\mathbb {C}}\). For details of this isomorphism, and the action of \(\text {Aff}({\mathbb {C}})\) on \({\mathbb {C}}\) see the start of Sect. 4. We call a given rigid motion \(\theta \in \text {SE}_2({\mathbb {R}})\) krich (with respect to the point set P) if
Finally, we introduce group energy, which plays a central role in the proof. Let S be a subset of a multiplicative group G. Then we define its group energy as
Throughout the paper we should think of S as a set of rigid motions within the affine group, so \(S \subseteq \text {SE}_2({\mathbb {R}})\le \text {Aff}({\mathbb {C}})\). Throughout, we use \(\theta \) to denote an element of \(\text {SE}_2({\mathbb {R}})\), a rigid motion. We will use g and h to denote more general elements of the affine group.
The proof is broken down into four main steps, a rough outline is the following.
 Step 1:

(Few triangles give many rich actions) If P has \(MP^2\) congruence classes of triangles then there are roughly P members of \(\text {SE}_2({\mathbb {R}})\) which are Prich.
 Step 2:

(Many rich actions lead to a large group energy) If S is the large set of rich rigid motions, then its group energy is as large as possible.
 Step 3:

(Rich symmetries with large group energy gives P large energy) Large group energy gives large intersection between veryrich rigid motions and a ‘nice’ coset of \(\text {Aff}({\mathbb {C}})\). This large intersection means either the additive or multiplicative energy of P is large.
 Step 4:

(Structure in the affine group gives P structure) We use the large coset intersection from Step 3. We obtain the circle structure using a coset of the affine group directly. For the line structure, we have to pass through the additive energy using Balog–Szemerédi–Gowers and Freiman type results.
The first and second steps require some delicacy to ensure that there are no logtype losses, see Lemma 2.1. The third step is an application of a Balog–Szemerédi–Gowerstype result in the affine group due to PetridisRocheNewtonRudnevWarren [22]. Step four is divided into a multiplicative and additive cases. The multiplicative case uses only the structure of cosets of \(\text {SE}_2({\mathbb {R}})\). The additive case we require the application of Balog–Szemerédi–Gowers and a result of Mudgal [20] that relies on the Freimantype result of GreenRuzsa [13].
We summarise steps 2 to 4 in the following Theorem.
Theorem 1.6
Suppose that P is a point set in \({\mathbb {R}}^2\), let \(C_1\) and \(C_2\) be positive constants. Suppose there is a set S in \(\text {SE}_2({\mathbb {R}})\) of \(C_1P\) actions, each of which are \((C_2P)\)rich with respect to the points in P. Then at least one of the following holds:

1.
There is a sharp energy bound \(\displaystyle E_+(P) \ge C_3P^3\). This energy bound provides the structure: There is a line l which contains \(\Omega (P^\sigma )\) points of P for some \(0<\sigma \le 1\). Further, a positive proportion of P is covered by lines parallel to l each containing \(\Omega (P^\sigma )\) points of P.

2.
There is a \(t \in {\mathbb {R}}^2\) such that the sharp energy bound \(\displaystyle E_\times (Pt)\ge C_4P^3\) holds. Using the affine group cosets directly we can show: There is a circle \(\gamma \) which contains \(\Omega (P)\) points of P.
To ensure readability of the proof we will focus on the constants seen in the triangle case only. Theorem 1.6 can be proved by using the constants \(C_1\) and \(C_2\) in place of those provided by Corollary 3.2 in Sects. 3, 4 and 5.
The energy bounds gained here are enough–under the triangle assumption–to resolve the energy problem of Katz [29, Problem 34].
We emphasise that the bound on the additive energy \(E_+(P)\) was necessary to demonstrate line structure, however the bound on the multiplicative energy \(E_\times (P)\) is not required to demonstrate circle structure. Once we rely on the energy to get structure, there are results of Stanchescu [33] and ErdősFürediPachRuzsa [9] that show that we need essentiallyoptimal energy bounds to have any chance of structure. We discuss this further in Sect. 5.2.
For distances, step 1 fails. Theorem 1.6 requires at least \(c_1P\) actions each being \((c_2P)\)rich. For a set with at most, say, \(P/\log P\) distinct distances (which is near minimal) our methods cannot guarantee many Prich actions. Indeed, it is not clear that a minimal distance set must contain many very rich actions. When looking at distances, unlike the triangle case, there cannot be examples where all actions are \((c_2P)\)rich (as such sets have to have at least P distances). This leads to the following question.
Question 1.7
If P is a finite point set in \({\mathbb {R}}^2\) with o(P) distinct distances, can one say anything about the distribution of the krich actions for \(k=P^\sigma \), \(0< \sigma \le 1\)?
It is a quick calculation using the Guth–Katz bound [14, Proposition 2.5] to show that krich actions with \(k\le \log P\) or \(k\ge P/2\) cannot provide a large enough energy for a set with such few distances, so some sort of polynomiallyrich actions are necessary. We can show that there is at least one \(\sigma \) in the range \(0<\sigma \le 1\) which achieves the Guth–Katz bound. Our method is not quantitative, so the best group energy bound we can get is \(E(S) = \Omega ( S^{2+1/3} )\). One would need an exponent better than \(2+1/2\) for our methods to give any structure in P.
In the square lattice example, each k has the maximum number of krich actions i.e. for all k we have \(S_{\ge k} = \Theta (P^3k^{2})\). We do not have enough evidence to conjecture that such a distribution holds across all nearoptimal sets. Any examples disproving this would be of great interest. We also note that our methods gives better energy bounds on P as the richness of the group actions increases. For the structural results it is necessary for essentiallyoptimal energy bounds, so we can afford no polynomial loss in the richness of our actions.
2 Few Triangles Give Many Rich Actions
In this section we detail the first step of our proof: That sets with few classes of congruent triangles have many veryrich actions. For a point set P and a positive integer k, recall that an element \(\theta \) in \(\text {SE}_2({\mathbb {R}})\) is a krich rigid motion if \(P \cap \theta P = k\). Define \(S_{\ge k}=S_{\ge k}(P)\) to be the elements of \(\text {SE}_2({\mathbb {R}})\) that are at least \(k\)rich rigid motions of P. We state the incidence result of GuthKatz [14, Proposition 2.5] with an explicit constant C as
We only need that C is finite, see [16] for explicit constants. Using this we can prove the following.
Lemma 2.1
Suppose we have a point set P in \({\mathbb {R}}^2\) with exactly \(MP^2\) congruence classes of triangles for some constant M. Let C be the Guth–Katz constant. Then we have at least \((3CM)^{3}P\) values of k such that both the following hold:

\(\displaystyle P \ge k\ge P/3CM\), and

\(\displaystyle S_{\ge k}(P) \ge \frac{P}{3M}.\)
When we use this lemma later we will only need one such value of k, however it is easier to prove the above.
The proof of Lemma 2.1 uses the initial step of the Elekes–Sharir–Guth–Katz framework. We recall the necessary steps prior to beginning the proof.
2.1 Counting Energy Using Rich Rigid Motions
For a point set P define its triangle energy as
We aim to rephrase this energy in terms of krich rigid motions. We can then use Cauchy–Schwarz and the fact that we have very few classes of congruent triangles to give an essentiallyoptimal lower bound. See the forthcoming equation (3).
We note the earlier observation of Rudnev [26], that two triangles are congruent if and only if there is a rigid motion taking one to the other. See Fig. 1. Thus, we can count the triangle energy by counting the number of rigid motions weighted by how rich these motions are. Indeed, note that if \(\theta \) is krich then there are \({k\atopwithdelims ()3}\) triples of the form \((p,q,r,\theta p,\theta q, \theta r)\). Letting \(S_{=k}\) be the set of exactly krich rigid motions we can count the triangle energy as
We change this sum to use \(S_{\ge k}\), the number of at least krich rigid motions, using that \(S_{=k} = S_{\ge k}  S_{\ge k+1}\). One then notes that the term \(S_{\ge k}\) occurs in the sum with weight
Thus we have that
To obtain the lower bound on this energy, we use Cauchy–Schwarz. For a triangle class t in T(P) define r(t), its number of realisations in P, as
We then have that
Notice that the final sum here is the same as the size of sixtuples \((p,q,r,p',q',r')\) where the triangles pqr and \(p'q'r'\) are congruent. So this is exactly the triangle energy.
Using this, along with the earlier energy upper bound, one has
This is the bound we will need for the remainder of the section. For completion, note that Rudnev’s lower bound follows by the application of the Guth–Katz bound, see (1). This gives
2.2 Proof of Lemma 2.1
With (3) established, we are ready to begin the proof of Lemma 2.1.
Proof of Lemma 2.1
As our k represent the richness of rigid motions acting on P, it is natural to only consider k in the range \(2 \le k \le P\). Indeed, we need \(k \ge 2\) to ensure \(S_{\ge k}\) is finite and for all \(\theta \) we have \(P\cap \theta P \le P\). We call a k good if both

\(\displaystyle P \ge k\ge P/3CM\), and

\(\displaystyle S_{\ge k}(P) \ge \frac{P}{3M}.\)
Let X be the number of good k. The bad k are in one of two cases. In the first case \(k\ge P/3CM\) and \(S_{\ge k}(P)\) is smaller than the threshold. We call such values of k 1bad with their total number being \(Y_1\). The second case is when \(k<P/3CM\) with no assumption on \(S_{\ge k}\). We call such values of k 2bad with their total number being \(Y_2\). These cases partition all values of k in the range \(2\le k \le P\), so \(X+Y_1+Y_2=P1\). We suppose, for contradiction, that \(X < P/27\,M^3C^3\).
As our set has \(MP^2\) triangles, (3) gives us that
Notice that (4) shows that the lower bound here is essentially the best possible.
We split the sum up into the sum over the good k and the sum over the two bad sets. For the sum of the good values of k we use (1). With \(k \ge P/3MC\) this gives \(S_{\ge k} \le 9M^2C^3P\). Thus, using \(k\le P\) we have,
With the last estimate using our assumption that \(X < P/27M^3C^3\).
We now estimate the contribution from the 1bad k. As each term is 1bad we know that
Using this, and again \(k\le P\), we have that
To conclude this case it suffices to show that
This follows as k can only exist in the range \(2 \le k \le P\), so the number of 1bad such k is strictly less than P i.e. \(Y_1 \le P1 < P\).
We now have to deal with the 2bad values of k. Being 2bad means that \(k < P/3CM\). We use (1) to bound each \(S_{\le k}\), obtaining
The final inequality using \(Y_2 < P/3CM\), as this is the range of k in the 2bad case. Thus, under the assumption that \(X < P/27\,M^3C^3\), we have that
this contradiction completes the proof. \(\square \)
3 Many Rich Actions Give Large Group Energy
We show that if we have very few classes of congruent triangles then there must be a large set of rigid motions that has very large group energy. See the forthcoming Corollary 3.2. The proof of this relies on a technical inequality which we state as a lemma.
Lemma 3.1
Let \(S_{\ge k}\) be a set of at least krich rigid motions in \(\text {SE}_2({\mathbb {R}})\). Then
We than combine Lemma 3.1 with one of the good k guaranteed by Lemma 2.1. This gives us the following corollary.
Corollary 3.2
If P is a set with at most \(MP^2\) classes of congruent triangles, then there is a set \(S\subset \text {SE}_2({\mathbb {R}})\) such that all of the following hold

\(\displaystyle S \ge \frac{P}{3M}.\)

Each element of S is at least \(\displaystyle \left( \frac{P}{3CM}\right) \)rich when acting on P.

\( \displaystyle \frac{S^3}{(3CM)^7} \le E(S). \)
We leave the more technical proof of Lemma 3.1 until after the short proof of Corollary 3.2.
Proof of Corollary 3.2
Lemma 2.1 gives us \(P/(3CM)^3\) values of k such that \(S_{\ge k} \ge \frac{P}{3M}\) where \(k \ge P/3CM\). We take one such k and let \(S=S_{\ge k}\). By Lemma 3.1 we have
Using the estimate on k six times and the estimate on S once we see that \(\frac{S^3}{(3CM)^7} \le E(S)\).
We finish the section by proving Lemma 3.1.
Proof of Lemma 3.1
We now use the methodology introduced and developed by Elekes in [3,4,5,6]. Let P(x) be used as the indicator function of \(x \in P\) and let \(S=S_{\ge k}\). Using that each element \(\theta \) of S is at least krich we have
Using Cauchy–Schwarz gives
As we have \(p\xrightarrow {\theta }\theta p\) and \(p\xrightarrow {\phi }\phi p\), we can see that \(\theta p \xrightarrow {\phi \theta ^{1}} \phi p\). Thus, we can relabel the sum over \(\theta , \phi \) as the sum over \(\varphi =\phi \theta ^{1}\) in \(SS^{1}\). When we do this we have to count the repeated representations of \(\varphi \) using the weight
So letting \(p' = \theta p\) allows us to write
Squaring both sides, we see that
We apply Hölder to obtain
The second sum is exactly the triangle energy discussed in Sect. 2. Indeed, we are counting the size of the set
which, as in (4), is bounded by \(CP^4\). Cubing both sides, we have
We then apply Cauchy–Schwarz,
We note that the first sum is just \(S^2\) and the second is the group energy E(S). Both of these calculations are the same as the ones in Sect. 2, after (2). Rearranging, we have the desired bound
4 Rich Symmetries with Large Group Energy Give P Large Energy
We demonstrate the structure that a set P with few classes of congruent triangles has in the affine group. See the forthcoming Corollary 4.2. We also show that point sets with few classes of congruent triangles demonstrate sharp energy bounds. See Corollary 4.4.
We will make extensive use of the affine group \(\text {Aff}({\mathbb {C}})\). We also make the usual identification of \(\mathbb {R}^2\) with \(\mathbb {C}\). We use that \(\text {Aff}(\mathbb {C})=\mathbb {C}^\times \ltimes \mathbb {C}\) with identity (1, 0) and semidirect product multiplication
The group of rigid motions \(\text {SE}_2(\mathbb {R})\) becomes a subgroup of \(\text {Aff}(\mathbb {C})=\mathbb {C}^\times \ltimes \mathbb {C}\) via embedding it as the subgroup \(S^1 \ltimes {\mathbb {C}}\). Let \(x=(x_1,x_2)\) and \(t=(t_1,t_2)\) be points in \({\mathbb {R}}^2\), the embedding is as follows
One can check this is a group isomorphism. This helps by letting us exploit the geometry of the affine group, similar approaches can be found be found in [22, 28]. The affine group acts on \({\mathbb {C}}\), in particular on \(P \subseteq {\mathbb {C}}\), via the action
We will care about two types of subgroups of \(\text {Aff}({\mathbb {C}})\). In particular those that can be thought of as lines when \(\text {Aff}({\mathbb {C}})\) is identified as the ‘plane’ \({\mathbb {C}}^2{\setminus } \{(0,z): z \in {\mathbb {C}}\}\).

The unipotent subgroup \(U_0=\{(1,z): z \in {\mathbb {C}}\}\) is a vertical line through the identity. A coset \(gU_0\) is the vertical line though g.

The maximal tori T(z), these are the stabiliser subgroups under the action in (9). So, for \(z\in {\mathbb {C}}\), we define \(T(z)=\text {Stab}(z)\). Tori correspond to nonvertical lines through the identity (1, 0). A coset gT(z) is a nonvertical line passing through g.
We use the following Theorem of PetridisRocheNewtonRudnevWarren [22], the proof of which is an application of Rudnev’s pointplane bound [27]. The version stated below is adapted to our setting, for a positive characteristic version see [22]. Similarly to the group energy we define, for S any subset of a group, the energy \(E^*(S) = \{ (g_1,g_2,g_3,g_4) \in S^4: g_1g_2=g_3g_4\}\).
Theorem 4.1
Let S be a finite set of transformations in the affine group \(\text {Aff}(\mathbb {C})\) such that no nonvertical line contains more than H points of S, and no vertical line contains more than V points of S. Then,
Shkredov [32] shows that \(E^*(S)\le E(S)\), so we can use E(S) as this maximum.
Using Corollary 3.2 with Theorem 4.1 we find a rich line in \(\text {Aff}({\mathbb {C}})\). Indeed, as a direct consequence of the group energy bound for the set S in Corollary 3.2 we can say that there are positive constants \(c_1\) and \(c_2\) such that one of the following must exist:

A vertical line in \(\text {Aff}({\mathbb {C}})\) that contains at least \(\displaystyle c_1\left( \frac{S}{(3CM)^{14}}\right) \) points of S;

A nonvertical line in \(\text {Aff}({\mathbb {C}})\) that contains at least \(\displaystyle c_2\left( \frac{S}{(3CM)^7}\right) \) points of S.
Corollary 3.2 tells us that \(S\ge P/3M\), this gives us the following corollary.
Corollary 4.2
Let P be a point set in \({\mathbb {R}}^2\) with at most \(MP^2\) classes of congruent triangles. Let C be the constant in the Guth–Katz theorem. Corollary 3.2 guarantees a set S which contains at least P/3M rigid motions, all of which are at least (P/3CM)rich. For this set S, there are positive constants \(c_1,c_2\) and \(z\in {\mathbb {C}}\) such that at least one of the following holds:

There is some g in \(\text {Aff}({\mathbb {C}})\) such that \(\displaystyle gU_0 \cap S \ge c_1\frac{P}{(3CM)^{14}(3M)}\).

There is some g in \(\text {Aff}({\mathbb {C}})\) and z in \({\mathbb {C}}\) such that \(\displaystyle gT(z) \cap S \ge c_2\frac{P}{(3CM)^7(3M)}\).
Unfortunately, there are point sets P where both the conclusions of Corollary 4.2 can be achieved simultaneously.^{Footnote 1} In Sect. 5.1 we show that we can take \(g\) and our cosets in the subgroup \(\text {SE}_2({\mathbb {R}})= S^1\ltimes {\mathbb {C}}\). This will be important for establishing the circle structure.
We can also prove the following result about the energy of the point set P. Recall that \(E_\times (P)\) is the multiplicative energy, treating P as a set of complex numbers.
Proposition 4.3
Suppose that P is a point set in \({\mathbb {R}}^2\), let \(C_1, C_2\) and \(C_3\) be positive constants. Suppose there is a set S in \(\text {SE}_2({\mathbb {R}})\) of rigid motions each of which are \((C_1P)\)rich when acting on P. Both of the following hold.

If \(\displaystyle gU_0 \cap S \ge C_2P\) then \(E_+(P)\ge C_2C_1^3P^3\),

If \(\displaystyle gT(z) \cap S \ge C_3P \) then there is some \(t\in {\mathbb {C}}\) such that \( E_\times (Pt)\ge C_3P(C_1P1)^2\).
Using the set S from Corollary 3.2 with the additional properties from Corollary 4.2, Proposition 4.3 allows us to conclude the following.
Corollary 4.4
Let P be a point set in \({\mathbb {R}}^2\) with at most \(MP^2\) classes of congruent triangles. Then at least one of the following is true:

\(\displaystyle E_+(P)\ge \frac{P^3}{(3CM)^{16}(3M)}\),

There exists some \(t\in {\mathbb {C}}\) such that \(\displaystyle E_\times (Pt)= \Omega \left( \frac{P^3}{(3CM)^{9}(3M)}\right) \).
The remainder of the section is devoted to the proof of Proposition 4.3.
Proof of Proposition 4.3
We prove the additive statement first. We include the multiplicative proof too as there are technical differences that need be checked. For notational ease let \(k=C_1P\) throughout the proof.
For the additive case we note that the assumptions give us a set S such that
By direct application of (6) we can see that \(gU_0 = \{ (g_1, g_1 z + g_2): z \in {\mathbb {C}}\}\). Fix an element \(\theta = (g_1, g_1 z + g_2)\) in \(gU_0 \cap S\). As \(\theta \) is krich, since it lies in S, there are k pairs \((p, q) \in P^2\) such that
Thus, for each such pair (p, q), we have
Note that z is dependent only on our choice of \(\theta \), not on the pair (p, q) selected in \(P\times \theta P\). The lefthand side lives in the set \(Pg_1P\). The set \(Pg_1P\) depends only on g and so is the same for all choices of \(\theta \in gU_0\). This uniformity allows us to show that the \((Pg_1P)\)energy (defined below) is large. We will prove this, then show why this suffices for the claimed additive energy bound.
For a complex number z in \(Pg_1P\), we define its number of realisations as
By (11), each of the k pairs (p, q) associated to \(\theta \) contribute to \(r_{(Pg_1P)}(g_1z+g_2)\), thus
We define the energy \(E_{+}(P, g_1P)\) as
We can count this energy, similarly to the calculation proceeding Lemma 2.1, as
Recall that, by assumption, \(gU_0 \cap S \ge C_2P\). So we have at least \(C_2P\) choices of \(\theta \). We showed in (12) that each such \(\theta \) gives a \(w=g_1z+g_2\), where z depends on \(\theta \), such that \(r_{(Pg_1P)}(w) \ge k\). Thus, recall that \(k=C_1P\), we have
To change this into a bound on the additive energy as defined, we use Cauchy–Schwarz. Indeed,
So we have, as claimed, that
For the second statement we argue similarly. Recall, we define the torus \(T(\zeta )\) as
Our assumption on S gives us that
Let \(h=(h_1,h_2)\) be in \(T(\zeta )\) such that \(\theta = gh\) is an element in \(gT(\zeta ) \cap S\). As gh is in S, it is krich. So, there are k pairs (p, q) in \(P^2\) such that
We need the following technical lemma, which we prove directly after this result.
Lemma 4.5
Let P be a finite point set identified in \({\mathbb {C}}\), \(\zeta \) some complex number. Suppose that \(h=(h_1,h_2)\in T(\zeta )\), and \(g=(g_1,g_2)\in \text {Aff}({\mathbb {C}})\). If \(p\ne \zeta \) and \(gh \cdot p = q\) then
Notice that the shifts \(qg\cdot \zeta \) and \(p\zeta \) on the lefthand side are entirely determined by \(\zeta \) and so only depend on the coset \(gT(\zeta )\). For a complex number \(\zeta '\), we define the number of representations \(r_{\frac{Pg\cdot \zeta }{P\zeta }}(\zeta ')\) as
The particular krich motion gh determines only the righthand side of (14). We want that each of the k pairs (p, q)associated to the krich motion gh to give us a representation of \(g_1h_1\). However, we cannot trivially rule out \(\zeta \in P\). This means we have at least \(k1\) such representations (as k is very large, this will not matter).
Thus, each element gh in \(gT(\zeta ) \cap S\) gives us a \(g_1h_1\) such that
We have \(C_3P\) choices of h such that \(gh\in gT(\zeta ) \cap S\). Each choice gives us a \(\zeta '=g_1h_1\) such that (15) holds. It is possible that different choices of gh give that same \(g_1h_1\). Suppose we have \(n_i\) repeats of \(g_1h_1=\zeta _i\). We can use that \(n_i(k1) \le (n_i(k1))^2\), for all \(n_1 \ge 1\), and that \(\sum _i n_i = C_3P\) to obtain
Writing this sum here as the energy
then rearranging the division one has that
Applying Cauchy–Schwarz and combining with (16) gives
Using the same energy redefinition trick as above converts both of these division energies into the usual multiplicative energies. So, we have that
So for translates of P by either \(t=\zeta \) or \(t=g\cdot \zeta \) we have that
\(\square \)
We now prove Lemma 4.5, which follows from a calculation.
Proof of Lemma 4.5
Using (6) we see that
By assumption \(gh \cdot p = q\). Using (9) we calculate the action of gh on \(p+\zeta \)
Using that \(h\in T(\zeta )\), we have that \(h_1\zeta +h_2 = \zeta \). So
We reevaluate \(gh \cdot (p+\zeta )\) to obtain
Using the definition of the action, we can see that \((g_1h_1p + g_1h_2 + g_2)=gh\cdot p\). So, combining this with our assumption that \(q=gh\cdot p\), we have
Setting these two different evaluations equal gives
Thus, as \(p\ne \zeta \), we have
5 Structure in P
We now use either the coset structure established in Corollary 4.2 or the additive energy bound found in Corollary 4.4 to give explicit geometric structure.
We start with the case when S has large intersection with a coset of the type gT(z). From our energy calculations above, we refer to this as the multiplicative case. When S has a large intersection with a coset \(gU_0\) this is referred to as the additive case and is dealt with in Sect. 5.2.
5.1 Multiplicative Case: Circle Structure
By examining the structure of cosets associated with the multiplicative energy, i.e. those of the form gT(z), we can deduce a stronger structural result without needing to use any additive combinatorial machinery. Before we do this we clarify that, as our intersection of gT(z) with \(\text {SE}_2({\mathbb {R}})\) is nonempty (as it contains some of S), we can view the intersection \((gT(z)) \cap S\) as living in a coset of \(T(z)\cap \text {SE}_2({\mathbb {R}})\). We will denote this coset by \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))=(gT(z))\cap \text {SE}_2({\mathbb {R}})\). This is justified in the following lemma.
Lemma 5.1
Let S be a subset of \(\text {SE}_2({\mathbb {R}})\), \(z \in \mathbb {C}\) and gT(z) a coset in \(\text {Aff}(\mathbb {C})\). If \((gT(z)) \cap S\) is nonempty, then there is some \(\theta \in S\) such that \((gT(z)) \cap S \subseteq \theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\).
Proof
It suffices to prove that \((gT(z))\cap \text {SE}_2({\mathbb {R}})=\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\) for some \(\theta \in S\). For two subgroups \(H_1,H_2\), the nonempty intersection of two cosets \(g_1H_1,g_2H_2\) is a coset of \(H_1 \cap H_2\).
As S has nonempty intersection with gT(z) and is contained in \(\text {SE}_2({\mathbb {R}})\), S has nonempty intersection with \((gT(z))\cap \text {SE}_2({\mathbb {R}})\). Thus, by the above, \((gT(z))\cap \text {SE}_2({\mathbb {R}})\) must lie in a coset of \(T(z) \cap \text {SE}_2({\mathbb {R}})\). There is at least one element of S in this coset, so we can choose some element of S as its coset representative. \(\square \)
By identifying any point \((x,y) \in {\mathbb {R}}^2\) with \(x+iy \in {\mathbb {C}}\), we can prove the following.
Proposition 5.2
Let P be a point set in \({\mathbb {R}}^2\). Let \(z\in {\mathbb {C}}\), \(\theta = (e^{i\alpha },t)\in \text {SE}_2({\mathbb {R}})= S^1 \ltimes {\mathbb {C}}\). Suppose we have a set \(S\subseteq \text {SE}_2({\mathbb {R}})\) such that \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\cap S \ge C_2P\) and each element of S is at least \((C_1P)\)rich with respect to the points in P. Then there exists a positive constant \(C_3\) and a circle \(\gamma \) such that \(P\cap \gamma  \ge C_3P.\)
The proof of Proposition 5.2 relies on the following technical Lemma.
Lemma 5.3
Fix some p and z in \({\mathbb {R}}^2\) and \(\theta =(e^{i\alpha }, t)\) in \(\text {SE}_2({\mathbb {R}})= S_1 \ltimes {\mathbb {C}}\). The orbit of p under the action of the coset \(\theta (T(z)\cap \text {SE}_2({\mathbb {R}}))\) is a circle in \({\mathbb {R}}^2\), the radius is a function of z and p only.
Lemma 5.3 follows from the observation that intersecting the stabilisers T(z) with \(\text {SE}_2({\mathbb {R}})\) reduces the dimension of T(z) from two, as a subset of the affine group, to one in \(\text {SE}_2({\mathbb {R}})\). This dimension reduction allows us to show that we have a constant proportion of our points on a circle. The proof of Lemma 5.3 is technical, so we will delay it until after Proposition 5.2.
Proof of Proposition 5.2
Define a digraph with vertex set \(P\) and directed edges \((p\rightarrow q)\) if there exists an element of \(\theta T(z)\) taking \(p\) to \(q\). By assumption there are \( C_2P\) elements of \(\theta T(z)\) each at least \(C_1P\)rich, and so there are \(C_1C_2 P^2\) edges in this graph. By the handshaking lemma and the pigeonhole principle there is a vertex of outdegree \(C_3P\), for a positive constant \(C_3\).
Note that if \((p\rightarrow q)\) is an edge then q must lie in the orbit of p under the action of the coset (as this is how edges are defined), so all the \(C_3P\) points of P that are outneighbours of p lie on this orbit. By Lemma 5.3 this orbit is a circle, so we are done.
We now prove Lemma 5.3. This directly uses the structure of the group \(T(z)\cap \text {SE}_2({\mathbb {R}})\).
Proof of Lemma 5.3
Recall from the embedding (8) that a translation in \(\text {SE}_2({\mathbb {R}})\) is an element of the form (1, t) for \(t\in {\mathbb {C}}\). We claim that every coset of the from \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\) contains exactly one translation. The proof now follows quickly.
Suppose that \(\theta \) is the identity, then our coset \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\) is exactly the set of rigid motions that preserve z. These are the rotations, in \({\mathbb {R}}^2\), about the point z (as we are in \(\text {SE}_2({\mathbb {R}})\) and not \(\text {Aff}({\mathbb {C}})\) we do not have any scalings). So, if p is a point, its orbit under the action of \(T(z)\cap \text {SE}_2({\mathbb {R}})\) will be the circle of radius \(pz\) centred at z.
If \(\theta \) is not the identify, relabel so that \(\theta \) is the unique translation in \(\theta (T(z)\cap \text {SE}_2({\mathbb {R}}))\). The orbit of p under \(T(z)\cap \text {SE}_2({\mathbb {R}})\) is a circle and we are applying the uniform translation \(\theta \) to this orbit, so it remains a circle. One can see that this circle is centered at \(\theta \cdot z\) with radius \(pz\).
We now need to justify why each coset \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\) has exactly one translation. By definition the group \(T(z)\cap \text {SE}_2({\mathbb {R}})\) are the rigid motions that preserve the point z. As this is in \(\text {SE}_2({\mathbb {R}})\), these are exactly the rotations about z. So, using the embedding (7), we can write these rotations as
Taking \(\theta =(e^{i\alpha },t)\) in \(\text {SE}_2({\mathbb {R}})\) and using the group multiplication law in (6), we see that
By embedding (8), translation requires the first component to be \(1\in S^1\). This happens for exactly one value of \(\vartheta \) i.e. when \(\vartheta = \alpha \). So \(\theta (T(z) \cap \text {SE}_2({\mathbb {R}}))\) has exactly one translation.
5.2 Additive Case: Line Structure
Our aim in this section is to demonstrate that a point set with few classes of congruent triangles has: large intersection with a line l; a positive proportion of P lies on veryrich lines all parallel to l. We prove the following theorem, essentially a rephrasing of [20, Lemma 3.2].
Theorem 5.4
Suppose that P is a point set in \({\mathbb {R}}^2\) with \(E_+(P)\ge CP^3\) then there is a subset \(P'\) of P with \(P'\ge C_1P\) and there exist parallel lines \(l_1, l_2,\ldots , l_r\) in \({\mathbb {R}}^2\), and constants \(0 < \sigma \le 1\), \(C_3, C_4>0\) such that
and
We do not use the structure of the affine group and instead rely only on our energy bound. Because of this reliance, we need P to have essentially maximal additive energy.
In order to discuss this, we need to introduce the notion of a sumset. For a subset A in an abelian group G we define the sumset \(A+A\) to be all distinct pairwise sums,
The sumset is closely related to the additive energy, see (17). To see why an essentially maximal energy bound is required, we introduce two results. For a given \(\varepsilon >0\), Stanchescu [33, Theorem 5(b)] and ErdősFürediPachRuzsa [9, Theorem 3.1] find Behrendtype point sets \(P \subset {\mathbb {R}}^2\) with no collinear triples such that \(P+P\le cP^{1+\varepsilon }.\) A similar Cauchy–Schwarz argument to those in Sect. 2 shows
Fortunately, Corollary 4.4 shows that point sets with few classes of congruent triangles have the essentially maximal energy \(E_+(P) \ge cP^3\).
In the proof of Theorem 5.4 we use traditional tools of additive combinatorics. The Balog–Szemerédi–Gowers Theorem [2, 12] allows us to pass form additive energy to additive sets. We then borrow Mudgal’s [20] use of Green and Ruzsa’s [13] Freimantype Theorem to provide the line structure. We will introduce both these results below.
The use of energy in the additive case, as opposed to the use of the affine group structure in the multiplicative case, is the reason for the different strength in the two structural results. One can see that the unipotent subgroup \(U_0\) has the same dimension in both \(\text {Aff}({\mathbb {C}})\) and \(\text {SE}_2({\mathbb {R}})\). So, our dimensionreduction trick used in Sect. 5.1 no longer works. One way to improve the structure found in Theorem 1.4 would be to find a way to use the affine group structure.
5.2.1 Additive Tools
We introduce the tools we will use from additive combinatorics. The following is the version of Balog–Szemerédi–Gowers Theorem we will use. We are not concerned with the explicit constants, as they do not effect the exponent in Theorem 1.4. We refer those interested in the explicit constants to the proof of Balog [1].
Theorem 5.5
(Balog–Szemerédi–Gowers) Let A be a finite set in an abelian group G with respect to the group operation \(+\). Then if \(E_+(A)\ge \alpha A^3\) we have an \(A' \subseteq A\) such that
where \(C_1\) and \(C_2\) are positive constants dependent on \(\alpha \) only.
We use the Freimantype result of Green–Ruzsa. In order to state the result we have to give some additional definitions.
Given an abelian group G, we define a proper progression \(\mathbb {P}\) of arithmetic dimension s and size \(\Lambda \) as
where \(\lambda _1\cdots \lambda _s = \Lambda \) and \(v_0, v_1,\ldots , v_s\) are elements of G such that all the sums in the progression are distinct.
We further define a coset progression to be a set of the form \(\mathbb {P} + H\) where \(\mathbb {P}\) is a proper progression and H is a subgroup of G.
Theorem 5.6
(Green–Ruzsa [13]) Let A be a subset of an abelian group G such that \(A + A \le KA\). Then A is contained in a coset progression of arithmetic dimension \(s \le C_5K^4 \log (K + 2)\) and size \(\Lambda = \mathbb {P} + H \le e^{C_5K^4log^2(K+2)}A\), for some constant \(C_5 > 0\).
5.2.2 Proof of Theorem 5.4
The proof of Theorem 5.4 is–but for some constants changingthe same as the Mudgal’s proof [20, Lemma 3.2]. We include it here for completeness.
Proof of Theorem 5.4
Use Balog–Szemerédi–Gowers on P to gain a subset \(P'\) such that \(P'\ge C_1P\) and \(P'+P' \le \frac{C_2}{C_1}P'\). From this point we are replicating the proof of [20, Lemma 3.2].
Applying Green–Ruzsa to \(P'\subseteq {\mathbb {R}}^2\) we have that \(P'\) lies in a coset progression \(\mathbb {P} + H\). Note that, as \(P'\) is finite, the bound on \(\Lambda \) implies H must be a finite subgroup. The only such subgroup over \({\mathbb {R}}^2\) is the trivial group. Thus, we can assume that \(P'\) lies in the proper progression \(\mathbb {P}\) only.
So, we have that \(P' \subseteq \mathbb {P}\) where \(\mathbb {P}\) is of size \(\Lambda \le C_6P\) and arithmetic dimension \(s \le C_7\),
By definition of the progression we have that \(\lambda _1 \cdots \lambda _s = \Lambda \le C_6P\), so by the pigeon–hole principle there is an i such that \(\lambda _i \ge C_6^{1/s}P^{1/s}\), without loss of generality let \(i=1\). Define the arithmetic progression Q as
The key step of [20, Lemma 3.2] is to think of the proper progression \(\mathbb {P}\) as a set of \(\Lambda /\lambda _1\) translates of Q. As \(\mathbb {P}\) is proper these translates are disjoint and thus
We have \(C_6^{11/s}P^{11/s}\) translates of Q covering all \(P'\ge C_1P\) points of \(P'\) and thus by the pigeonhole principle there is a translate that contains at least \(C_1C_6^{1/s1}P^{1/s}\) points of \(P'\). This gives us our rich line, which we will denote as \(l_1\).
We now examine the above cover to show that a positive proportion of \(P'\), and hence P, is covered by the translates of \(l_1\). Order the cover so that
where each \(l_k\) is a translate of Q with nonempty intersection with \(P'\). Let \(C_3\) be a constant to be determined later, then let r be the minimal positive integer such that
if \(C_3 \ge 1\) such an r exists. Define the set B, of points in \(P'\) our rich lines miss, as \(B=P'{\setminus } \bigcup _{i=1}^r(P'\cap l_i)\). To prove the result it suffices to show \(B\le P'/2\). We have that
rearranging gives \((kr) > \frac{BC_3}{P'\cap l_1}\). We also have, by selecting relevant subsets of \(P'\) and using that the lines \(l_j\) are disjoint, that
Combining (18) and (19) we have that
Using the constant \(C_2\) from Theorem 5.5 we have that
Choosing \(C_3\) to be the maximum of \(2C_2\) and 1 we can ensure that \(B<P'/2\). To finish the proof as stated let \(\sigma = 1/s\) and \(C_4 = \frac{C_1C_6^{1/s1}}{C_3}\).
5.3 Proof of Theorem 1.4
We now have all the necessary tools to prove our main theorem.
Proof of Theorem 1.4
We start with Corollary 4.2. This gives us an S in \(\text {SE}_2({\mathbb {R}})\), with each element of S a rigid motion that is at \((C_1P)\)rich when acting on P. Further, there is some g in \(\text {Aff}({\mathbb {C}})\), so that at least one of the following holds:

1.
\(\displaystyle gU_0\cap S \ge C_2 P\),

2.
Some \(z\in {\mathbb {C}}\) so that \(\displaystyle gT(z)\cap S \ge C_3 P\).
If the first of these holds, we get the line structure by combining the first statement of Proposition 4.3 with Theorem 5.4.
If the second holds, note that S has nonempty intersection with a coset gT(z) and S is contained in \(\text {SE}_2({\mathbb {R}})\). So we can apply Lemma 5.1 then Proposition 5.2.
Data availability:
Not applicable
Notes
For example: Let \(P_1\) be an arithmetic progression on a line and \(P_2\) be the set of vertices of a regular polygon. Suppose that \(P_1=P_2\). Then \(P=P_1\cup P_2\) we would have lines/cosets of both types.
References
Balog, A.: Many additive quadruples. CRM Proc. Lecture Notes Addit. Comb. 43, 10 (2007)
Balog, A., Szemerédi, E.: A statistical theorem of set addition. Combinatorica 14(3), 263–268 (1994)
Elekes, G.: On linear combinatorics I. Concurrencyan algebraic approach. Combinatorica 17(4), 447–458 (1997)
Elekes, G.: On the number of sums and products. Acta Arith. 81(4), 365–367 (1997)
Elekes, György.: On linear combinatorics II. Structure theorems via additive number theory. Combinatorica 18(1), 13–25 (1998)
Elekes, G.: Sums versus products in number theory, algebra and Erdős geometry. Paul Erdős Math. II(11), 241–290 (2001)
Elekes, G., Sharir, M.: Incidences in three dimensions and distinct distances in the plane. Comb. Probab. Comput. 20(4), 571–608 (2011)
Erdős, P.: On some metric and combinatorial geometric problems. Discret. Math. 60, 147–153 (1986)
Erdős, P., Füredi, Z., Pach, J., Ruzsa, I.Z.: The grid revisited. Discret. Math. 111(1–3), 189–196 (1993)
Erdős, P.: On sets of distances of n points. Am. Math. Mon. 77(7), 738–740 (1946)
Erdős, P.: On some problems of elementary and combinatorial geometry. Ann. Math. Ser. 4(103), 99–108 (1975)
Gowers, W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. GAFA 11(3), 465–588 (2001)
Green, B., Ruzsa, I.Z.: Freiman’s theorem in an arbitrary Abelian group. J. Lond. Math. Soc. 75(1), 163–175 (2007)
Guth, L., Katz, N.H.: On the Erdős distinct distances problem in the plane. Ann. Math. 155–190 (2015)
Hanson, B.: The additive structure of Cartesian products spanning few distinct distances. Combinatorica 38(5), 1095–1100 (2018)
Kollár, J.: SzemerédiTrottertype theorems in dimension 3. Adv. Math. 271, 30–61 (2015)
Kővári, T., Sós, V.T., Turán, P.: On a problem of Zarankiewicz. In: Colloquium Mathematicum, vol. 3, pp. 50–57. Polska Akademia Nauk (1954)
Landau, E.: Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate (1909)
Lund, B., Sheffer, A., De Zeeuw, F.: Bisector energy and few distinct distances. Discret. Comput. Geom. 56(2), 337–356 (2016)
Mudgal, A.: Sums of linear transformations in higher dimensions. Q. J. Math. 70(3), 965–984 (2019)
Pach, J., De Zeeuw, F.: Distinct distances on algebraic curves in the plane. Comb. Probab. Comput. 26(1), 99–117 (2017)
Petridis, G., RocheNewton, O., Rudnev, M., Warren, A.: An energy bound in the affine group. Int. Math. Res. Not. 2022(2), 1154–1172 (2022)
Pohoata, C.: On Cartesian products which determine few distinct distances. Electron. J. Comb. 26(1), P1 (2019)
Raz, O.E., RocheNewton, O., Sharir, M.: Sets with few distinct distances do not have heavy lines. Discret. Math. 338(8), 1484–1492 (2015)
RocheNewton, O.: On sets with few distinct distances. arXiv preprint arXiv:1608.02775 (2016)
Rudnev, M.: On the number of classes of triangles determined by \( n \) points in \(\mathbb{R}^{2}\). arXiv preprint arXiv:1205.4865 (2012)
Rudnev, M.: On the number of incidences between points and planes in three dimensions. Combinatorica 38(1), 219–254 (2018)
Rudnev, M., Shkredov, I.D.: On the growth rate in SL\(_2(\mathbb{F} _p)\), the affine group and sumproduct type implications. Mathematika 68(3), 738–783 (2022)
Sheffer, A.: Distinct distances: open problems and current bounds. arXiv preprint arXiv:1406.1949 (2014)
Sheffer, A.: Few distinct distances implies many points on a line. Blog Post (2014)
Sheffer, A., Zahl, J., De Zeeuw, F.: Few distinct distances implies no heavy lines or circles. Combinatorica 36(3), 349–364 (2016)
Shkredov, I.D.: Modular hyperbolas and bilinear forms of Kloosterman sums. J. Number Theory 220, 182–211 (2021)
Stanchescu, Y.V.: Planar sets containing no three collinear points and nonaveraging sets of integers. Discret. Math. 256(1–2), 387–395 (2002)
Acknowledgements
The authors would like to thank Misha Rudnev and Oleksiy Klurman for suggesting the problem and for helpful discussions. The second author would like to thank Akshat Mudgal for a very helpful conversation and for pointing out [20, Theorem 1.5]. We would like to thank the Heilbronn Institute for Mathematical Research for supporting the Focused Research Workshop “Testing Additive Structure” where we received many helpful comments and input. We would especially like to thank Brandon Hanson for pointing out the examples in [9] and [33]. The authors would like the thank the anonymous referees for a careful reading of the manuscript and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Jonathan Passant is supported by the Heilbronn Institute.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mansfield, S., Passant, J. A Structural Theorem for Sets with Few Triangles. Combinatorica 44, 155–178 (2024). https://doi.org/10.1007/s0049302300066z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s0049302300066z