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Abstract
We show that if a finite point set P ⊆ R

2 has the fewest congruence classes of triangles
possible, up to a constant M , then at least one of the following holds.

• There is a σ > 0 and a line l which contains �(|P|σ ) points of P . Further, a
positive proportion of P is covered by lines parallel to l each containing �(|P|σ )

points of P .
• There is a circle γ which contains a positive proportion of P .

This provides evidence for two conjectures of Erdős. We use the result of Petridis–
Roche–Newton–Rudnev–Warren on the structure of the affine group combined with
classical results from additive combinatorics.

Keywords Triangles · Additive structure · Distinct distances

Mathematics Subject Classification 52C10

1 Introduction

Let P be a finite point set in R
2. Erdős’ famous distance conjecture [10] asks what the

minimum number of distinct distances such a set can describe. This has lead to many
beautiful techniques over 64 years culminating in the 2010 solution of Guth and Katz
[14].

Erdős also posed much harder problems attempting to understand the structure of
sets that determine few distinct distances. To provide context for these, suppose we
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have a square
√
N × √

N lattice. A classical result of Landau [18] on the growth of
sums of squares shows that such a lattice gives �(N/

√
log N ) distinct distances. One

can find other lattices that give the same number of distances, but there are no known
constructions which give fewer distances.We call a point set P that has c|P|/√log |P|
distances a near-optimal point set. Erdős’ conjectures [8] concern the structure of such
near-optimal sets. The hardest such question is:

Question 1.1 (Erdős) Do all near-optimal point sets have a lattice structure?

Erdős admitted that “I really have no idea and the problem is perhaps too vaguely
stated.” Erdős suggests that it would be nice to see if a near-optimal point set P must
contain at least |P|1/2 points on a common line. This conjecture also appears too hard.
The first bound due to Szemerédi (communicated by Erdős [11]) showed there must
be a line containing at least

√
log |P| points of P . Using Kővári-Sós-Turán [17] this

can be improved to at least log |P| points, see [30]. There is a weaker version of Erdős’
line question that is still open.

Question 1.2 (Erdős) Prove or disprove: For a sufficiently small ε > 0, every near-
optimal point set P contains at least c|P|ε points on a common line.

Lund, Sheffer and de Zeeuw [19] used bisector energy to show for any 0 < σ ≤ 1/4
there is either a line or circle containing c|P|σ points of P , or there are c|P|8/5−12σ/5−ε

lines each containing at least c
√
log |P| points of P . There has been recent work on

the converse problem: lines, circles and constant degree polynomials cannot have too
large an intersection with a near-optimal set [21, 24, 31]. By combining these three
results, we obtain that for every near-optimal set P , every constant-degree algebraic
curve contains at most c|P|43/52 points of P .

One possible approach, suggested by Nets Katz, is to show that the additive energy
of a near-optimal point set is large [29, Problem34]. Following this philosophy,Hanson
[15], Roche-Newton [25] and Pohoata [23] demonstrate that near-optimal Cartesian
products have small difference sets.

Since the introduction of the Guth–Katz–Elekes–Sharir framework [7, 14], it has
been productive to view distinct distances as congruence classes of pairs of points
(p, q) ∈ P2 under the action of the group of rigid motions on R

2. This was essential
to the Guth-Katz [14] result which showed a point set P has �(|P|/ log |P|) distinct
distances. One can think of classes of congruent triangles as the congruence classes of
triples of points (p, q, r) under the same action. This perspective was used by Rudnev
[26] to show that a point set P describes at least �(|P|2) distinct classes of congruent
triangles (see Fig. 1).

Like with distances, we can see that Rudnev’s lower bound is sharp by looking at
the

√
N × √

N integer lattice. There are two further examples for triangles: points in
an arithmetic progression on a line; or vertices of a regular polygon (see Fig. 2).

One can also generalise these examples, by repeating them O(1) times. If P is
on O(1) parallel lines with the same arithmetic progression on each then P defines
�(|P|2) congruence classes of triangles. Similarly, if P is on O(1) concentric circles
with points lying at a vertex of a scaled version of the same polygon, then we have
few classes of congruent triangles.
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Fig. 1 A pair of congruent triangles, with a rigid motion θ transforming (p, q, r)
θ−→ (p′, q ′, r ′)

Fig. 2 An arithmetic progression on a line and points at the vertices of a regular polygon

We consider point sets with few classes of congruent triangles. We can prove much
stronger structural results in this setting than those known for distances. Before we
describe our result we formalise our assumption. Rudnev’s sharp lower bound gives
us the following definition for triangle-near-optimal point sets.

Definition 1.3 We say a finite point set P in R
2 is triangle-near-optimal if, for some

constant M , P describes at most M |P|2 classes of congruent triangle.
We show that all triangle-near-optimal sets are similar to the above examples in two
ways: Theorem 1.4 gives us the geometric similarity. Corollary 4.4 shows that all
triangle near optimal sets have strong additive or multiplicative structure, similar to
the above examples.

Theorem 1.4 Suppose we have a finite point set P in R
2. Let M be a positive constant

and let c, c′ and C be positive constants that depend only on M. If P contains M |P|2
classes of congruent triangles (triangle-near-optimal) then either

• There is a line l which contains c|P|σ points of P for some 0 < σ ≤ 1. Further,
a positive proportion of P is covered by lines parallel to l each containing c′|P|σ
points of P.
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• There is a circle γ which contains C |P| points of P.

We also give sharp energy bounds for such sets, see the slightly more general Theorem
1.6 below.

Theorem 1.4 solves Question 1.2 of Erdős for sets with few classes of congruent
triangles. Unfortunately, while triangles and distances are similar from the point of
view of rigid motions, we cannot prove a direct relationship between sets with few
triangles and those with few distances. This leads to the following question, a positive
answer to which would fully resolve Question 1.2 of Erdős.

Question 1.5 Let P be a finite point set in R
2 with at most c|P|/√log |P| distinct

distances. Does P describe at most M |P|2 classes of congruent triangles for some
constant M? The constant M may depend on c.

Wewill discuss how our methods fail to answer this question after describing the proof
of Theorem 1.4 (see Question 1.7). The proof of Theorem 1.4 consists of several steps
combining the Elekes–Sharir–Guth–Katz framework and structure of the affine group
with the traditional tools of Balog–Szemerédi–Gowers and the Freiman-type result of
Green and Ruzsa from additive combinatorics. Before we outline the proof, we need
to introduce some useful notions.

Let P be a finite point set in R
2, M a positive constant (constants do not grow with

|P|). We consider the set of classes of congruent triangles determined by P , defined
as

T (P) = {(|p − q|, |q − r |, |p − r |) : p, q, r ∈ P}.

To apply the tools from additive combinatorics, we interpret additive structure in P
using the additive energy of P . The additive energy is defined as

E+(P) = |{(p1, p2, p3, p4) ∈ P4 : p1 + p2 = p3 + p4}|.

To interpret multiplicative structure, we identify R
2 with C in the usual way, so that

we can think of P as a subset of C. This allows us to define the multiplicative energy
of P as

E×(P) = |{(p1, p2, p3, p4) ∈ P4 ⊂ C
4 : p1 p2 = p3 p4}|.

This identification also allows us to interpret the group of rigid motions on R
2, which

we denote by SE2(R), as a subgroup of the affine group on C, denoted Aff(C). For
technical calculations we use the isomorphism Aff(C) ∼= C

×
� C. For details of this

isomorphism, and the action of Aff(C) on C see the start of Sect. 4. We call a given
rigid motion θ ∈ SE2(R) k-rich (with respect to the point set P) if

|P ∩ θ P| = k.
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Finally, we introduce group energy, which plays a central role in the proof. Let S
be a subset of a multiplicative group G. Then we define its group energy as

E(S) = |{(g1, g2, g3, g4) ∈ S4 : g1g−1
2 = g3g

−1
4 }|.

Throughout the paper we should think of S as a set of rigid motions within the affine
group, so S ⊆ SE2(R) ≤ Aff(C). Throughout, we use θ to denote an element of
SE2(R), a rigid motion. We will use g and h to denote more general elements of the
affine group.

The proof is broken down into four main steps, a rough outline is the following.

Step 1 (Few triangles give many rich actions) If P has M |P|2 congruence classes of
triangles then there are roughly |P| members of SE2(R) which are |P|-rich.

Step 2 (Many rich actions lead to a large group energy) If S is the large set of rich
rigid motions, then its group energy is as large as possible.

Step 3 (Rich symmetries with large group energy gives P large energy) Large group
energy gives large intersection between very-rich rigid motions and a ‘nice’
coset of Aff(C). This large intersectionmeans either the additive or multiplica-
tive energy of P is large.

Step 4 (Structure in the affine group gives P structure) We use the large coset inter-
section from Step 3. We obtain the circle structure using a coset of the affine
group directly. For the line structure, we have to pass through the additive
energy using Balog–Szemerédi–Gowers and Freiman type results.

The first and second steps require some delicacy to ensure that there are no log-type
losses, see Lemma 2.1. The third step is an application of a Balog–Szemerédi–Gowers-
type result in the affine group due to Petridis-Roche-Newton-Rudnev-Warren [22].
Step four is divided into a multiplicative and additive cases. The multiplicative case
uses only the structure of cosets of SE2(R). The additive casewe require the application
of Balog–Szemerédi–Gowers and a result of Mudgal [20] that relies on the Freiman-
type result of Green-Ruzsa [13].

We summarise steps 2 to 4 in the following Theorem.

Theorem 1.6 Suppose that P is a point set in R
2, let C1 and C2 be positive constants.

Suppose there is a set S in SE2(R) of C1|P| actions, each of which are (C2|P|)-rich
with respect to the points in P. Then at least one of the following holds:

1. There is a sharp energy bound E+(P) ≥ C3|P|3. This energy bound provides
the structure: There is a line l which contains �(|P|σ ) points of P for some
0 < σ ≤ 1. Further, a positive proportion of P is covered by lines parallel to l
each containing �(|P|σ ) points of P.

2. There is a t ∈ R
2 such that the sharp energy bound E×(P − t) ≥ C4|P|3 holds.

Using the affine group cosets directly we can show: There is a circle γ which
contains �(|P|) points of P.

To ensure readability of the proof we will focus on the constants seen in the triangle
case only. Theorem 1.6 can be proved by using the constants C1 and C2 in place of
those provided by Corollary 3.2 in Sects. 3, 4 and 5.
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The energy bounds gained here are enough–under the triangle assumption–to
resolve the energy problem of Katz [29, Problem 34].

We emphasise that the bound on the additive energy E+(P) was necessary to
demonstrate line structure, however the bound on the multiplicative energy E×(P)

is not required to demonstrate circle structure. Once we rely on the energy to get
structure, there are results of Stanchescu [33] and Erdős-Füredi-Pach-Ruzsa [9] that
show that we need essentially-optimal energy bounds to have any chance of structure.
We discuss this further in Sect. 5.2.

For distances, step 1 fails. Theorem 1.6 requires at least c1|P| actions each being
(c2|P|)-rich. For a set with at most, say, |P|/ log |P| distinct distances (which is
near minimal) our methods cannot guarantee many |P|-rich actions. Indeed, it is not
clear that a minimal distance set must contain many very rich actions. When looking
at distances, unlike the triangle case, there cannot be examples where all actions
are (c2|P|)-rich (as such sets have to have at least |P| distances). This leads to the
following question.

Question 1.7 If P is a finite point set in R
2 with o(|P|) distinct distances, can one say

anything about the distribution of the k-rich actions for k = |P|σ , 0 < σ ≤ 1?

It is a quick calculation using the Guth–Katz bound [14, Proposition 2.5] to show that
k-rich actions with k ≤ log |P| or k ≥ |P|/2 cannot provide a large enough energy for
a set with such few distances, so some sort of polynomially-rich actions are necessary.
We can show that there is at least one σ in the range 0 < σ ≤ 1 which achieves the
Guth–Katz bound. Our method is not quantitative, so the best group energy bound we
can get is E(S) = �(|S|2+1/3). One would need an exponent better than 2 + 1/2 for
our methods to give any structure in P .

In the square lattice example, each k has the maximum number of k-rich actions i.e.
for all k we have |S≥k | = �(|P|3k−2). We do not have enough evidence to conjecture
that such a distribution holds across all near-optimal sets. Any examples disproving
this would be of great interest. We also note that our methods gives better energy
bounds on P as the richness of the group actions increases. For the structural results
it is necessary for essentially-optimal energy bounds, so we can afford no polynomial
loss in the richness of our actions.

2 Few Triangles GiveMany Rich Actions

In this section we detail the first step of our proof: That sets with few classes of
congruent triangles have many very-rich actions. For a point set P and a positive
integer k, recall that an element θ in SE2(R) is a k-rich rigid motion if |P ∩ θ P| = k.
Define S≥k = S≥k(P) to be the elements of SE2(R) that are at least k-rich rigid
motions of P . We state the incidence result of Guth-Katz [14, Proposition 2.5] with
an explicit constant C as

|S≥k(P)| ≤ C
|P|3
k2

. (1)
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We only need that C is finite, see [16] for explicit constants. Using this we can prove
the following.

Lemma 2.1 Suppose we have a point set P in R
2 with exactly M |P|2 congruence

classes of triangles for some constant M. Let C be the Guth–Katz constant. Then we
have at least (3CM)−3|P| values of k such that both the following hold:

• |P| ≥ k ≥ |P|/3CM, and

• |S≥k(P)| ≥ |P|
3M

.

When we use this lemma later we will only need one such value of k, however it is
easier to prove the above.

The proof of Lemma 2.1 uses the initial step of the Elekes–Sharir–Guth–Katz
framework. We recall the necessary steps prior to beginning the proof.

2.1 Counting Energy Using Rich Rigid Motions

For a point set P define its triangle energy as

ET (P) = |{(p, q, r , p′, q ′, r ′) ∈ P6 : tri. pqr congruent to tri. p′q ′r ′}|.

We aim to rephrase this energy in terms of k-rich rigid motions. We can then use
Cauchy–Schwarz and the fact that we have very few classes of congruent triangles to
give an essentially-optimal lower bound. See the forthcoming equation (3).

We note the earlier observation of Rudnev [26], that two triangles are congruent if
and only if there is a rigid motion taking one to the other. See Fig. 1. Thus, we can
count the triangle energy by counting the number of rigid motions weighted by how
rich these motions are. Indeed, note that if θ is k-rich then there are

(k
3

)
triples of the

form (p, q, r , θ p, θq, θr). Letting S=k be the set of exactly k-rich rigid motions we
can count the triangle energy as

ET (P) =
|P|∑

k=3

|S=k |
(
k

3

)
.

We change this sum to use S≥k , the number of at least k-rich rigid motions, using that
|S=k | = |S≥k | − |S≥k+1|. One then notes that the term |S≥k | occurs in the sum with
weight

(
k

3

)
−

(
k − 1

3

)
≤ k2.

Thus we have that

ET (P) ≤
|P|∑

k=3

|S≥k |k2.
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To obtain the lower bound on this energy, we use Cauchy–Schwarz. For a triangle
class t in T (P) define r(t), its number of realisations in P , as

r(t) = |{(p, q, r) ∈ P3 : triangle pqr is congruent to t}|.
We then have that

|P|6 =
⎛

⎝
∑

t∈T (P)

r(t)

⎞

⎠

2

≤ |T (P)|
∑

t

r2(t). (2)

Notice that the final sum here is the same as the size of six-tuples (p, q, r , p′, q ′, r ′)
where the triangles pqr and p′q ′r ′ are congruent. So this is exactly the triangle energy.

Using this, along with the earlier energy upper bound, one has

|P|6 ≤ |T (P)|
|P|∑

k=3

|S≥k |k2. (3)

This is the bound we will need for the remainder of the section. For completion, note
that Rudnev’s lower bound follows by the application of the Guth–Katz bound, see
(1). This gives

|P|∑

k=3

|S≥k |k2 ≤ C |P|4. (4)

2.2 Proof of Lemma 2.1

With (3) established, we are ready to begin the proof of Lemma 2.1.

Proof of Lemma 2.1 As our k represent the richness of rigid motions acting on P , it is
natural to only consider k in the range 2 ≤ k ≤ |P|. Indeed, we need k ≥ 2 to ensure
S≥k is finite and for all θ we have |P ∩ θ P| ≤ |P|. We call a k good if both

• |P| ≥ k ≥ |P|/3CM , and

• |S≥k(P)| ≥ |P|
3M

.

Let X be the number of good k. The bad k are in one of two cases. In the first case
k ≥ |P|/3CM and |S≥k(P)| is smaller than the threshold. We call such values of k 1-
bad with their total number being Y1. The second case is when k < |P|/3CM with no
assumption on |S≥k |. We call such values of k 2-bad with their total number being Y2.
These cases partition all values of k in the range 2 ≤ k ≤ |P|, so X+Y1+Y2 = |P|−1.
We suppose, for contradiction, that X < |P|/27M3C3.

As our set has M |P|2 triangles, (3) gives us that

|P|4
M

≤
|P|∑

k=1

|S≥k |k2. (5)
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Notice that (4) shows that the lower bound here is essentially the best possible.
We split the sum up into the sum over the good k and the sum over the two bad

sets. For the sum of the good values of k we use (1). With k ≥ |P|/3MC this gives
|S≥k | ≤ 9M2C3|P|. Thus, using k ≤ |P| we have,

∑

k good

|S≥k |k2 ≤ X · 9M2C3|P| · |P|2 <
|P|4
3M

.

With the last estimate using our assumption that X < |P|/27M3C3.
We now estimate the contribution from the 1-bad k. As each term is 1-bad we know

that

|S≥k | <
|P|
3M

.

Using this, and again k ≤ |P|, we have that

∑

k 1-bad

|S≥k |k2 ≤ Y1 ·
( |P|
3M

)
· |P|2.

To conclude this case it suffices to show that

Y1

( |P|3
3M

)
<

|P|4
3M

.

This follows as k can only exist in the range 2 ≤ k ≤ |P|, so the number of 1-bad
such k is strictly less than |P| i.e. Y1 ≤ |P| − 1 < |P|.

We now have to deal with the 2-bad values of k. Being 2-bad means that k <

|P|/3CM . We use (1) to bound each |S≤k |, obtaining

∑

k 2-bad

|S≥k |k2 ≤ Y2 · C |P|3 <
|P|4
3M

.

The final inequality using Y2 < |P|/3CM , as this is the range of k in the 2-bad case.
Thus, under the assumption that X < |P|/27M3C3, we have that

|P|4
M

≤
|P|∑

k=1

|S≥k |k2 <
|P|4
M

,

this contradiction completes the proof. �
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3 Many Rich Actions Give Large Group Energy

We show that if we have very few classes of congruent triangles then there must be
a large set of rigid motions that has very large group energy. See the forthcoming
Corollary 3.2. The proof of this relies on a technical inequality which we state as a
lemma.

Lemma 3.1 Let S≥k be a set of at least k-rich rigid motions in SE2(R). Then

k6|S≥k |4
C |P|7 ≤ E(S≥k).

We than combine Lemma 3.1 with one of the good k guaranteed by Lemma 2.1. This
gives us the following corollary.

Corollary 3.2 If P is a set with at most M |P|2 classes of congruent triangles, then
there is a set S ⊂ SE2(R) such that all of the following hold

• |S| ≥ |P|
3M

.

• Each element of S is at least

( |P|
3CM

)
-rich when acting on P.

• |S|3
(3CM)7

≤ E(S).

We leave themore technical proof of Lemma 3.1 until after the short proof of Corollary
3.2.

Proof of Corollary 3.2 Lemma 2.1 gives us |P|/(3CM)3 values of k such that |S≥k | ≥
|P|
3M where k ≥ |P|/3CM . We take one such k and let S = S≥k . By Lemma 3.1 we
have

k6|S|4
C |P|7 ≤ E(S).

Using the estimate on k six times and the estimate on |S| once we see that |S|3
(3CM)7

≤
E(S).

We finish the section by proving Lemma 3.1.

Proof of Lemma 3.1 Wenow use themethodology introduced and developed by Elekes
in [3–6]. Let P(x) be used as the indicator function of x ∈ P and let S = S≥k . Using
that each element θ of S is at least k-rich we have

k|S| ≤
∑

p∈P

∑

θ∈S
P(θ p).
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Using Cauchy–Schwarz gives

k|S| ≤ |P|1/2
⎛

⎝
∑

p∈P

∑

θ,φ

P(θ p)P(φ p)

⎞

⎠

1/2

.

As we have p
θ−→ θ p and p

φ−→ φ p, we can see that θ p
φθ−1

−−−→ φ p. Thus, we can
relabel the sum over θ, φ as the sum over ϕ = φθ−1 in SS−1. When we do this we
have to count the repeated representations of ϕ using the weight

rSS−1(ϕ) = |{(θ, φ) ∈ S × S : φθ−1 = ϕ}|.

So letting p′ = θ p allows us to write

∑

p∈P

∑

θ,φ

P(θ p)P(φ p) =
∑

p′∈P

∑

ϕ

P(ϕ p′)rSS−1(ϕ).

Squaring both sides, we see that

k2|S|2 ≤ |P|
∑

p′∈P

∑

ϕ

P(ϕ p′)rSS−1(ϕ),

k2|S|2 ≤ |P|
∑

ϕ

rSS−1(ϕ)
∑

p′∈P

P(ϕ p′).

We apply Hölder to obtain

k2|S|2 ≤ |P|
(

∑

ϕ

r3/2
SS−1(ϕ)

)2/3
⎛

⎝
∑

ϕ

∑

p,p′,p′′∈P

P(ϕ p)P(ϕ p′)P(ϕ p′′)

⎞

⎠

1/3

.

The second sum is exactly the triangle energy discussed in Sect. 2. Indeed, we are
counting the size of the set

ET (P) = {(p, p′, p′′, ϕ p, ϕ p′, ϕ p′′) ∈ P6 : ϕ ∈ SE2(R)},

which, as in (4), is bounded by C |P|4. Cubing both sides, we have

k6|S|6 ≤ |P|3
(

∑

ϕ

r1/2
SS−1(ϕ)rSS−1(ϕ)

)2

C |P|4.

We then apply Cauchy–Schwarz,

k6|S|6 ≤ |P|3
(

∑

ϕ

rSS−1(ϕ)

) (
∑

ϕ

r2SS−1(ϕ)

)

C |P|4.
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We note that the first sum is just |S|2 and the second is the group energy E(S). Both of
these calculations are the same as the ones in Sect. 2, after (2). Rearranging, we have
the desired bound

k6|S|4
C |P|7 ≤ E(S).

4 Rich Symmetries with Large Group Energy Give P Large Energy

We demonstrate the structure that a set P with few classes of congruent triangles has in
the affine group. See the forthcoming Corollary 4.2. We also show that point sets with
few classes of congruent triangles demonstrate sharp energy bounds. See Corollary
4.4.

We will make extensive use of the affine group Aff(C). We also make the usual
identification of R

2 with C. We use that Aff(C) = C
×

� C with identity (1, 0) and
semidirect product multiplication

(g1, g2)(h1, h2) = (g1h1, g1h2 + g2). (6)

The group of rigid motions SE2(R) becomes a subgroup of Aff(C) = C
×

� C via
embedding it as the subgroup S1 � C. Let x = (x1, x2) and t = (t1, t2) be points in
R
2, the embedding is as follows

Rotation by angle θ about the point x → (eiθ , (x1 + i x2)(1 − eiθ )) (7)

Translation by t → (1, t1 + i t2) (8)

One can check this is a group isomorphism. This helps by letting us exploit the geom-
etry of the affine group, similar approaches can be found be found in [22, 28]. The
affine group acts on C, in particular on P ⊆ C, via the action

(g1, g2) · x = g1x + g2. (9)

We will care about two types of subgroups of Aff(C). In particular those that can be
thought of as lines when Aff(C) is identified as the ‘plane’ C

2\{(0, z) : z ∈ C}.
• The unipotent subgroup U0 = {(1, z) : z ∈ C} is a vertical line through the
identity. A coset gU0 is the vertical line though g.

• The maximal tori T (z), these are the stabiliser subgroups under the action in (9).
So, for z ∈ C, we define T (z) = Stab(z). Tori correspond to non-vertical lines
through the identity (1, 0). A coset gT (z) is a non-vertical line passing through g.

We use the following Theorem of Petridis-Roche-Newton-Rudnev-Warren [22], the
proof of which is an application of Rudnev’s point-plane bound [27]. The version
stated below is adapted to our setting, for a positive characteristic version see [22].
Similarly to the group energy we define, for S any subset of a group, the energy
E∗(S) = |{(g1, g2, g3, g4) ∈ S4 : g1g2 = g3g4}|.
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Theorem 4.1 Let S be a finite set of transformations in the affine groupAff(C) such that
no non-vertical line contains more than H points of S, and no vertical line contains
more than V points of S. Then,

max{E(S), E∗(S)} = O
(
V 1/2|S|5/2 + H |S|2

)
.

Shkredov [32] shows that E∗(S) ≤ E(S), so we can use E(S) as this maximum.
Using Corollary 3.2 with Theorem 4.1 we find a rich line in Aff(C). Indeed, as a

direct consequence of the group energy bound for the set S in Corollary 3.2 we can say
that there are positive constants c1 and c2 such that one of the following must exist:

• A vertical line in Aff(C) that contains at least c1

( |S|
(3CM)14

)
points of S;

• A non-vertical line in Aff(C) that contains at least c2

( |S|
(3CM)7

)
points of S.

Corollary 3.2 tells us that |S| ≥ |P|/3M , this gives us the following corollary.

Corollary 4.2 Let P be a point set in R
2 with at most M |P|2 classes of congruent

triangles. Let C be the constant in the Guth–Katz theorem. Corollary 3.2 guaran-
tees a set S which contains at least |P|/3M rigid motions, all of which are at least
(|P|/3CM)-rich. For this set S, there are positive constants c1, c2 and z ∈ C such
that at least one of the following holds:

• There is some g in Aff(C) such that |gU0 ∩ S| ≥ c1
|P|

(3CM)14(3M)
.

• There is some g in Aff(C) and z in C such that |gT (z) ∩ S| ≥ c2
|P|

(3CM)7(3M)
.

Unfortunately, there are point sets P where both the conclusions of Corollary 4.2 can
be achieved simultaneously.1 In Sect. 5.1 we show that we can take g and our cosets
in the subgroup SE2(R) = S1 � C. This will be important for establishing the circle
structure.

We can also prove the following result about the energy of the point set P . Recall
that E×(P) is the multiplicative energy, treating P as a set of complex numbers.

Proposition 4.3 Suppose that P is a point set in R
2, let C1,C2 and C3 be positive

constants. Suppose there is a set S in SE2(R) of rigid motions each of which are
(C1|P|)-rich when acting on P. Both of the following hold.

• If |gU0 ∩ S| ≥ C2|P| then E+(P) ≥ C2C3
1 |P|3,

• If |gT (z) ∩ S| ≥ C3|P| then there is some t ∈ C such that E×(P − t) ≥
C3|P|(C1|P| − 1)2.

Using the set S from Corollary 3.2 with the additional properties from Corollary 4.2,
Proposition 4.3 allows us to conclude the following.

1 For example: Let P1 be an arithmetic progression on a line and P2 be the set of vertices of a regular
polygon. Suppose that |P1| = |P2|. Then P = P1 ∪ P2 we would have lines/cosets of both types.
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Corollary 4.4 Let P be a point set in R
2 with at most M |P|2 classes of congruent

triangles. Then at least one of the following is true:

• E+(P) ≥ |P|3
(3CM)16(3M)

,

• There exists some t ∈ C such that E×(P − t) = �

( |P|3
(3CM)9(3M)

)
.

The remainder of the section is devoted to the proof of Proposition 4.3.

Proof of Proposition 4.3 We prove the additive statement first. We include the mul-
tiplicative proof too as there are technical differences that need be checked. For
notational ease let k = C1|P| throughout the proof.

For the additive case we note that the assumptions give us a set S such that

|gU0 ∩ S| ≥ C2|P| and ∀θ ∈ S |P ∩ θ P| ≥ k. (10)

By direct application of (6) we can see that gU0 = {(g1, g1z + g2) : z ∈ C}. Fix an
element θ = (g1, g1z + g2) in gU0 ∩ S. As θ is k-rich, since it lies in S, there are k
pairs (p, q) ∈ P2 such that

q = θ · p = (g1, g1z + g2) · p = g1 p + g1z + g2.

Thus, for each such pair (p, q), we have

q − g1 p = g1z + g2. (11)

Note that z is dependent only on our choice of θ , not on the pair (p, q) selected
in P × θ P . The left-hand side lives in the set P − g1P . The set P − g1P depends
only on g and so is the same for all choices of θ ∈ gU0. This uniformity allows us
to show that the (P − g1P)-energy (defined below) is large. We will prove this, then
show why this suffices for the claimed additive energy bound.

For a complex number z in P − g1P , we define its number of realisations as

r(P−g1P)(w) = |{(p, q) ∈ P2 : q − g1 p = w}|.
By (11), each of the k pairs (p, q) associated to θ contribute to r(P−g1P)(g1z + g2),
thus

r(P−g1P)(g1z + g2) ≥ k. (12)

We define the energy E+(P, g1P) as

E+(P, g1P) = |{(p, q, p′, q ′) ∈ P4 : q − g1 p = q ′ − g1 p
′}|.

We can count this energy, similarly to the calculation proceeding Lemma 2.1, as

E+(P, g1P) =
∑

w

r2(P−g1P)(w).
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Recall that, by assumption, |gU0 ∩ S| ≥ C2|P|. So we have at least C2|P| choices of
θ . We showed in (12) that each such θ gives a w = g1z + g2, where z depends on θ ,
such that r(P−g1P)(w) ≥ k. Thus, recall that k = C1|P|, we have

E+(P, g1P) =
∑

w

r2(P−g1P)(w) ≥ C2|P| · k2 = C2C
2
1 |P|3.

To change this into a bound on the additive energy as defined,we useCauchy–Schwarz.
Indeed,

E+(P, αP) =
∑

t∈P−P

rP−P (t)rP−P(t/α) ≤
(

∑

t

r2P−P (t)

)1/2

(
∑

t

r2P−P (t/α)

)1/2

= E+(P).

So we have, as claimed, that

C2C
2
1 |P|3 ≤ E+(P, αP) ≤ E+(P).

For the second statement we argue similarly. Recall, we define the torus T (ζ ) as

T (ζ ) = Stab(ζ ) = {(h1, h2) ∈ Aff(C) : h1ζ + h2 = ζ }.
Our assumption on S gives us that

|gT (ζ ) ∩ S| ≥ C3|P| and ∀θ ∈ S |P ∩ θ P| ≥ k. (13)

Let h = (h1, h2) be in T (ζ ) such that θ = gh is an element in gT (ζ ) ∩ S. As gh is
in S, it is k-rich. So, there are k pairs (p, q) in P2 such that

gh · p = q.

We need the following technical lemma, which we prove directly after this result.

Lemma 4.5 Let P be a finite point set identified inC, ζ some complex number. Suppose
that h = (h1, h2) ∈ T (ζ ), and g = (g1, g2) ∈ Aff(C). If p �= ζ and gh · p = q then

q − g · ζ

p − ζ
= g1h1. (14)

Notice that the shifts q − g · ζ and p− ζ on the left-hand side are entirely determined
by ζ and so only depend on the coset gT (ζ ). For a complex number ζ ′, we define the
number of representations r P−g·ζ

P−ζ
(ζ ′) as

r P−g·ζ
P−ζ

(ζ ′) =
∣∣∣∣

{
(p, q) ∈ P2 : q − g · ζ

p − ζ
= ζ ′

} ∣∣∣∣.
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The particular k-rich motion gh determines only the right-hand side of (14). We
want that each of the k pairs (p, q)associated to the k-rich motion gh to give us a
representation of g1h1. However, we cannot trivially rule out ζ ∈ P . This means we
have at least k − 1 such representations (as k is very large, this will not matter).

Thus, each element gh in gT (ζ ) ∩ S gives us a g1h1 such that

r P−g·ζ
P−ζ

(g1h1) ≥ k − 1. (15)

We have C3|P| choices of h such that gh ∈ gT (ζ ) ∩ S. Each choice gives us a
ζ ′ = g1h1 such that (15) holds. It is possible that different choices of gh give that
same g1h1. Suppose we have ni repeats of g1h1 = ζi . We can use that ni (k − 1) ≤
(ni (k − 1))2, for all n1 ≥ 1, and that

∑
i ni = C3|P| to obtain

C3|P|(k − 1)2 ≤
∑

ζ ′
r2P−g·ζ

P−ζ

(ζ ′). (16)

Writing this sum here as the energy

∣∣∣∣

{
(p, q, p′, q ′) ∈ (P \ {ζ })4 : q − g · ζ

p − ζ
= q ′ − g · ζ

p′ − ζ

} ∣∣∣∣,

then rearranging the division one has that

∑

ζ ′
r2P−g·ζ

P−ζ

(ζ ′) =
∑

ζ ′′
r P−g·ζ
P−g·ζ

(ζ ′′)r P−ζ
P−ζ

(ζ ′′).

Applying Cauchy–Schwarz and combining with (16) gives

C3|P|(k − 1)2 ≤
⎛

⎝
∑

ζ ′′
r2P−g·ζ
P−g·ζ

(ζ ′′)

⎞

⎠

1/2 ⎛

⎝
∑

ζ ′′
r2P−ζ
P−ζ

(ζ ′′)

⎞

⎠

1/2

.

Using the same energy redefinition trick as above converts both of these division
energies into the usual multiplicative energies. So, we have that

C3|P|(k − 1)2 ≤ E1/2
× (P − g · ζ )E1/2

× (P − ζ ).

So for translates of P by either t = ζ or t = g · ζ we have that

E×(P − t) ≥ C3|P|(k − 1)2 = C3|P|(C1|P| − 1)2.

�
We now prove Lemma 4.5, which follows from a calculation.
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Proof of Lemma 4.5 Using (6) we see that

gh = (g1h1, g1h2 + g2).

By assumption gh · p = q. Using (9) we calculate the action of gh on p + ζ

gh · (p + ζ ) = g1h1(p + ζ ) + g1h2 + g2,

= g1h1 p + g1(h1ζ + h2) + g2.

Using that h ∈ T (ζ ), we have that h1ζ + h2 = ζ . So

gh · (p + ζ ) = g1h1 p + g1ζ + g2,

= g1h1 p + g · ζ.

We reevaluate gh · (p + ζ ) to obtain

gh · (p + ζ ) = g1h1(p + ζ ) + g1h2 + g2,

= (g1h1 p + g1h2 + g2) + g1h1ζ.

Using the definition of the action, we can see that (g1h1 p + g1h2 + g2) = gh · p. So,
combining this with our assumption that q = gh · p, we have

gh · (p + ζ ) = gh · p + g1h1ζ

= q + g1h1ζ.

Setting these two different evaluations equal gives

g1h1 p + g · ζ = q + g1h1ζ

g1h1(p − ζ ) = q − g · ζ

Thus, as p �= ζ , we have

q − g · ζ

p − ζ
= g1h1.

5 Structure in P

We now use either the coset structure established in Corollary 4.2 or the additive
energy bound found in Corollary 4.4 to give explicit geometric structure.

We start with the case when S has large intersection with a coset of the type gT (z).
From our energy calculations above, we refer to this as the multiplicative case. When
S has a large intersection with a coset gU0 this is referred to as the additive case and
is dealt with in Sect. 5.2.
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5.1 Multiplicative Case: Circle Structure

By examining the structure of cosets associated with the multiplicative energy, i.e.
those of the form gT (z), we can deduce a stronger structural result without needing
to use any additive combinatorial machinery. Before we do this we clarify that, as our
intersection of gT (z) with SE2(R) is non-empty (as it contains some of S), we can
view the intersection (gT (z))∩S as living in a coset of T (z)∩SE2(R). We will denote
this coset by θ(T (z)∩SE2(R)) = (gT (z))∩SE2(R). This is justified in the following
lemma.

Lemma 5.1 Let S be a subset of SE2(R), z ∈ C and gT (z) a coset in Aff(C). If
(gT (z))∩ S is non-empty, then there is some θ ∈ S such that (gT (z))∩ S ⊆ θ(T (z)∩
SE2(R)).

Proof It suffices to prove that (gT (z))∩SE2(R) = θ(T (z)∩SE2(R)) for some θ ∈ S.
For two subgroups H1, H2, the non-empty intersection of two cosets g1H1, g2H2 is a
coset of H1 ∩ H2.

As S has non-empty intersection with gT (z) and is contained in SE2(R), S has non-
empty intersection with (gT (z)) ∩ SE2(R). Thus, by the above, (gT (z)) ∩ SE2(R)

must lie in a coset of T (z) ∩ SE2(R). There is at least one element of S in this coset,
so we can choose some element of S as its coset representative. �
By identifying any point (x, y) ∈ R

2 with x + iy ∈ C, we can prove the following.

Proposition 5.2 Let P beapoint set inR
2. Let z ∈ C, θ = (eiα, t) ∈ SE2(R) = S1�C.

Suppose we have a set S ⊆ SE2(R) such that |θ(T (z) ∩ SE2(R)) ∩ S| ≥ C2|P| and
each element of S is at least (C1|P|)-rich with respect to the points in P. Then there
exists a positive constant C3 and a circle γ such that |P ∩ γ | ≥ C3|P|.
The proof of Proposition 5.2 relies on the following technical Lemma.

Lemma 5.3 Fix some p and z in R
2 and θ = (eiα, t) in SE2(R) = S1 � C. The orbit

of p under the action of the coset θ(T (z) ∩ SE2(R)) is a circle in R
2, the radius is a

function of z and p only.

Lemma 5.3 follows from the observation that intersecting the stabilisers T (z) with
SE2(R) reduces the dimension of T (z) from two, as a subset of the affine group, to
one in SE2(R). This dimension reduction allows us to show that we have a constant
proportion of our points on a circle. The proof of Lemma 5.3 is technical, so we will
delay it until after Proposition 5.2.

Proof of Proposition 5.2 Define a digraph with vertex set P and directed edges (p →
q) if there exists an element of θT (z) taking p to q. By assumption there are C2|P|
elements of θT (z) each at least C1|P|-rich, and so there are C1C2|P|2 edges in this
graph. By the handshaking lemma and the pigeon-hole principle there is a vertex of
out-degree C3|P|, for a positive constant C3.

Note that if (p → q) is an edge then q must lie in the orbit of p under the action
of the coset (as this is how edges are defined), so all the C3|P| points of P that are
out-neighbours of p lie on this orbit. By Lemma 5.3 this orbit is a circle, so we are
done.
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Wenow prove Lemma 5.3. This directly uses the structure of the group T (z)∩SE2(R).

Proof of Lemma 5.3 Recall from the embedding (8) that a translation in SE2(R) is
an element of the form (1, t) for t ∈ C. We claim that every coset of the from
θ(T (z) ∩ SE2(R)) contains exactly one translation. The proof now follows quickly.

Suppose that θ is the identity, then our coset θ(T (z) ∩ SE2(R)) is exactly the set
of rigid motions that preserve z. These are the rotations, in R

2, about the point z (as
we are in SE2(R) and not Aff(C) we do not have any scalings). So, if p is a point, its
orbit under the action of T (z) ∩ SE2(R) will be the circle of radius ||p − z|| centred
at z.

If θ is not the identify, relabel so that θ is the unique translation in θ(T (z)∩SE2(R)).
The orbit of p under T (z) ∩ SE2(R) is a circle and we are applying the uniform
translation θ to this orbit, so it remains a circle. One can see that this circle is centered
at θ · z with radius ||p − z||.

Wenowneed to justifywhy each coset θ(T (z)∩SE2(R))has exactly one translation.
By definition the group T (z)∩SE2(R) are the rigid motions that preserve the point z.
As this is in SE2(R), these are exactly the rotations about z. So, using the embedding
(7), we can write these rotations as

T (z) ∩ SE2(R) = {(eiϑ , z(1 − eiϑ)) : ϑ ∈ [0, 2π)}.

Taking θ = (eiα, t) in SE2(R) and using the group multiplication law in (6), we see
that

(eiα, t)(T (z) ∩ SE2(R)) = {(ei(ϑ+α), zeiα(1 − ei(ϑ)) + t) : ϑ ∈ [0, 2π)}.

By embedding (8), translation requires the first component to be 1 ∈ S1. This happens
for exactly one value of ϑ i.e. when ϑ = −α. So θ(T (z) ∩ SE2(R)) has exactly one
translation.

5.2 Additive Case: Line Structure

Our aim in this section is to demonstrate that a point set with few classes of congruent
triangles has: large intersection with a line l; a positive proportion of P lies on very-
rich lines all parallel to l. We prove the following theorem, essentially a rephrasing of
[20, Lemma 3.2].

Theorem 5.4 Suppose that P is a point set in R
2 with E+(P) ≥ C |P|3 then there is

a subset P ′ of P with |P ′| ≥ C1|P| and there exist parallel lines l1, l2, . . . , lr in R
2,

and constants 0 < σ ≤ 1, C3,C4 > 0 such that

|P ′ ∩ l1| ≥ · · · ≥ |P ′ ∩ lr | ≥ |P ′ ∩ l1|
C3

≥ C4|P|σ ,

and

|P ′ \ (l1 ∪ · · · ∪ lr )| < |P ′|/2.
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We do not use the structure of the affine group and instead rely only on our energy
bound. Because of this reliance, we need P to have essentially maximal additive
energy.

In order to discuss this, we need to introduce the notion of a sumset. For a subset
A in an abelian group G we define the sumset A+ A to be all distinct pairwise sums,

A + A = {a + a′ : a, a′ ∈ A}.

The sumset is closely related to the additive energy, see (17). To see why an essentially
maximal energy bound is required, we introduce two results. For a given ε > 0,
Stanchescu [33, Theorem 5(b)] and Erdős-Füredi-Pach-Ruzsa [9, Theorem 3.1] find
Behrend-type point sets P ⊂ R

2 with no collinear triples such that |P+P| ≤ c|P|1+ε.

A similar Cauchy–Schwarz argument to those in Sect. 2 shows

|P + P| ≤ c|P|1+ε ⇒ E+(P) ≥ |P|3−ε. (17)

Fortunately, Corollary 4.4 shows that point sets with few classes of congruent triangles
have the essentially maximal energy E+(P) ≥ c|P|3.

In the proof of Theorem 5.4 we use traditional tools of additive combinatorics. The
Balog–Szemerédi–Gowers Theorem [2, 12] allows us to pass form additive energy to
additive sets. We then borrow Mudgal’s [20] use of Green and Ruzsa’s [13] Freiman-
type Theorem to provide the line structure. We will introduce both these results below.

The use of energy in the additive case, as opposed to the use of the affine group
structure in the multiplicative case, is the reason for the different strength in the two
structural results. One can see that the unipotent subgroupU0 has the same dimension
in both Aff(C) and SE2(R). So, our dimension-reduction trick used in Sect. 5.1 no
longer works. One way to improve the structure found in Theorem 1.4 would be to
find a way to use the affine group structure.

5.2.1 Additive Tools

We introduce the tools we will use from additive combinatorics. The following is the
version of Balog–Szemerédi–Gowers Theorem we will use. We are not concerned
with the explicit constants, as they do not effect the exponent in Theorem 1.4. We
refer those interested in the explicit constants to the proof of Balog [1].

Theorem 5.5 (Balog–Szemerédi–Gowers) Let A be a finite set in an abelian group G
with respect to the group operation +. Then if E+(A) ≥ α|A|3 we have an A′ ⊆ A
such that

|A′| ≥ C1|A| and |A′ + A′| ≤ C2|A|,

where C1 and C2 are positive constants dependent on α only.

We use the Freiman-type result of Green–Ruzsa. In order to state the result we have
to give some additional definitions.
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Given an abelian groupG, we define a proper progressionP of arithmetic dimension
s and size � as

P = {v0 + u1v1 + · · · + usvs |0 ≤ ui < λi for 1 ≤ i ≤ s},

where λ1 · · · λs = � and v0, v1, . . . , vs are elements of G such that all the sums in
the progression are distinct.

We further define a coset progression to be a set of the form P + H where P is a
proper progression and H is a subgroup of G.

Theorem 5.6 (Green–Ruzsa [13]) Let A be a subset of an abelian group G such that
|A + A| ≤ K |A|. Then A is contained in a coset progression of arithmetic dimension
s ≤ C5K 4 log(K +2) and size � = |P+ H | ≤ eC5K 4log2(K+2)|A|, for some constant
C5 > 0.

5.2.2 Proof of Theorem 5.4

Theproof ofTheorem5.4 is–but for some constants changing-the same as theMudgal’s
proof [20, Lemma 3.2]. We include it here for completeness.

Proof of Theorem 5.4 Use Balog–Szemerédi–Gowers on P to gain a subset P ′ such
that |P ′| ≥ C1|P| and |P ′ + P ′| ≤ C2

C1
|P ′|. From this point we are replicating the

proof of [20, Lemma 3.2].
Applying Green–Ruzsa to P ′ ⊆ R

2 we have that P ′ lies in a coset progression
P + H . Note that, as P ′ is finite, the bound on � implies H must be a finite subgroup.
The only such subgroup over R

2 is the trivial group. Thus, we can assume that P ′ lies
in the proper progression P only.

So, we have that P ′ ⊆ P where P is of size � ≤ C6|P| and arithmetic dimension
s ≤ C7,

P = {v0 + u1v1 + · · · + usvs |0 ≤ ui < λi for 1 ≤ i ≤ s}.

Bydefinitionof the progressionwehave thatλ1 · · · λs = � ≤ C6|P|, so by the pigeon–
hole principle there is an i such that λi ≥ C1/s

6 |P|1/s , without loss of generality let
i = 1. Define the arithmetic progression Q as

Q = {u1v1 : 0 ≤ u1 < λ1}.

The key step of [20, Lemma 3.2] is to think of the proper progression P as a set of
�/λ1 translates of Q. As P is proper these translates are disjoint and thus

�

λ1
<

C6|P|
C1/s
6 |P|1/s

= C1−1/s
6 |P|1−1/s .

We have C1−1/s
6 |P|1−1/s translates of Q covering all |P ′| ≥ C1|P| points of P ′

and thus by the pigeon-hole principle there is a translate that contains at least
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C1C
1/s−1
6 |P|1/s points of P ′. This gives us our rich line, which we will denote as

l1.
We now examine the above cover to show that a positive proportion of P ′, and

hence P , is covered by the translates of l1. Order the cover so that

|P ′ ∩ l1| ≥ · · · ≥ |P ′ ∩ lk | > 0,

where each lk is a translate of Q with non-empty intersection with P ′. Let C3 be a
constant to be determined later, then let r be the minimal positive integer such that

|P ′ ∩ l1| ≥ · · · ≥ |P ′ ∩ lr | ≥ |P ′ ∩ l1|
C3

= C1C
1/s−1
6 |P|1/s
C3

,

if C3 ≥ 1 such an r exists. Define the set B, of points in P ′ our rich lines miss, as
B = P ′\ ⋃r

i=1(P
′ ∩ li ). To prove the result it suffices to show |B| ≤ |P ′|/2. We have

that

|B| =
k∑

j=r+1

|P ′ ∩ l j | < (k − r)
|P ′ ∩ l1|

C3
, (18)

rearranging gives (k − r) >
|B|C3
|P ′∩l1| . We also have, by selecting relevant subsets of P ′

and using that the lines l j are disjoint, that

|P ′ + P ′| ≥ |(P ′ ∩ l1) + B| =
k∑

j=r+1

|(P ′ ∩ l1) + (P ′ ∩ l j )| ≥ (k − r)|P ′ ∩ l1|.

(19)

Combining (18) and (19) we have that

|P ′ + P ′| > |B|C3.

Using the constant C2 from Theorem 5.5 we have that

|B| <
|P ′ + P ′|

C3
≤ C2|P ′|

C3
.

Choosing C3 to be the maximum of 2C2 and 1 we can ensure that |B| < |P ′|/2. To
finish the proof as stated let σ = 1/s and C4 = C1C

1/s−1
6
C3

.

5.3 Proof of Theorem 1.4

We now have all the necessary tools to prove our main theorem.
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Proof of Theorem 1.4 We start with Corollary 4.2. This gives us an S in SE2(R), with
each element of S a rigid motion that is at (C1|P|)-rich when acting on P . Further,
there is some g in Aff(C), so that at least one of the following holds:

1. |gU0 ∩ S| ≥ C2|P|,
2. Some z ∈ C so that |gT (z) ∩ S| ≥ C3|P|.
If the first of these holds, we get the line structure by combining the first statement of
Proposition 4.3 with Theorem 5.4.

If the second holds, note that S has non-empty intersection with a coset gT (z) and
S is contained in SE2(R). So we can apply Lemma 5.1 then Proposition 5.2.
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