Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. John Wiley and Sons Inc., New York
Google Scholar
Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33(1):121–131. https://doi.org/10.1002/joc.3413
Article
Google Scholar
Allstadt AJ, Vavrus SJ, Heglund PJ, Pidgeon AM, Thogmartin WE, Radeloff VC (2015) Spring plant phenology and false springs in the conterminous US during the 21st century. Environ Res Lett 10(10):104008. https://doi.org/10.1088/1748-9326/10/10/104008
Article
Google Scholar
Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 1027–1035
Google Scholar
Ault TR, Macalady AK, Pederson GT, Betancourt JL, Schwartz MD (2011) Northern Hemisphere modes of variability and the timing of spring in western North America. J Clim 24(15):4003–4014
Article
Google Scholar
Ault TR, Schwartz MD, Zurita-Milla R, Weltzin JF, Betancourt JL, Ault TR et al (2015a) Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices. J Clim 28(21):8363–8378. https://doi.org/10.1175/JCLI-D-14-00736.1
Article
Google Scholar
Ault TR, Zurita-Milla R, Schwartz MD (2015b) A Matlab© toolbox for calculating spring indices from daily meteorological data. Comput Geosci 83:46–53. https://doi.org/10.1016/J.CAGEO.2015.06.015
Article
Google Scholar
Badeck F-W, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162(2):295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x
Article
Google Scholar
Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric For Meteorol 217:10–21. https://doi.org/10.1016/j.agrformet.2015.11.007
Article
Google Scholar
Belmecheri S, Babst F, Hudson AR, Betancourt J, Trouet V, Belmecheri S et al (2017) Northern hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact 21(8):1–23. https://doi.org/10.1175/EI-D-16-0023.1
Article
Google Scholar
Briske DD, Joyce LA, Polley HW, Brown JR, Wolter K, Morgan JA et al (2015) Climate-change adaptation on rangelands: linking regional exposure with diverse adaptive capacity. Front Ecol Environ 13(5):249–256. https://doi.org/10.1890/140266
Article
Google Scholar
Brunsdon C, Comber A (2012) Assessing the changing flowering date of the common lilac in North America: a random coefficient model approach. Geoinformatica 16(4):675–690. https://doi.org/10.1007/s10707-012-0159-6
Article
Google Scholar
Burghardt LT, Metcalf CJE, Wilczek AM, Schmitt J, Donohue K (2015) Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes. Am Nat 185(2):212–227. https://doi.org/10.1086/679439
Article
Google Scholar
Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20(3):951. https://doi.org/10.2307/2403139
Article
Google Scholar
Caprio JM (1974) The solar thermal unit concept in problems related to plant development and potential evapotranspiration. Springer, Berlin, pp 353–364. https://doi.org/10.1007/978-3-642-51863-8_29
Book
Google Scholar
Caprio JM (1993) Western regional phenological summary of information on honeysuckle and Lilac first bloom phase covering the period 1956-1991. Mont. Agric. Exp. Stn. State Clim. Cent. Circ., No. 3, 92 pp
Cayan DR, Dettinger MD, Kammerdiener SA, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the Western United States. Bull Am Meteorol Soc 82(3):399–415. https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2
Article
Google Scholar
Chmielewski F-M (2013) Phenology in agriculture and horticulture. In: Schwartz MD (ed) Phenology: An Integrative Environmental Science. Springer Netherlands, Dordrecht, pp 539–561. https://doi.org/10.1007/978-94-007-6925-0_29
Chapter
Google Scholar
Chuine I, Cambon G, Comtois P (2000) Scaling phenology from the local to the regional level: advances from species-specific phenological models. Glob Chang Biol 6(8):943–952. https://doi.org/10.1046/j.1365-2486.2000.00368.x
Article
Google Scholar
Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR (2004) Grape ripening as a past climate indicator. Nature 432(7015):289–290. https://doi.org/10.1038/432289a
CAS
Article
Google Scholar
Chuine I, Bonhomme M, Legave J-M, García de Cortázar-Atauri I, Charrier G, Lacointe A, Améglio T (2016) Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob Chang Biol 22(10):3444–3460. https://doi.org/10.1111/gcb.13383
Article
Google Scholar
Črepinšek Z, Kajfež-Bogataj L, Bergant K (2006) Modelling of weather variability effect on fitophenology. Ecol Model 194(1–3):256–265. https://doi.org/10.1016/J.ECOLMODEL.2005.10.020
Article
Google Scholar
Crimmins A, Kolian M, Bacanskas L, Rosseel K (2016) Climate Change Indicators in the United States 2016 (fourth edition). https://doi.org/10.13140/RG.2.2.30480.20487
Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH et al (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28(15):2031–2064. https://doi.org/10.1002/joc.1688
Article
Google Scholar
Doi H, Katano I (2008) Phenological timings of leaf budburst with climate change in Japan. Agric For Meteorol 148(3):512–516. https://doi.org/10.1016/j.agrformet.2007.10.002
Article
Google Scholar
Ellwood ER, Temple SA, Primack RB, Bradley NL, Davis CC (2013) Record-breaking early flowering in the Eastern United States. PLoS One 8(1):e53788. https://doi.org/10.1371/journal.pone.0053788
CAS
Article
Google Scholar
Enquist CAF, Kellermann JL, Gerst KL, Miller-Rushing AJ (2014) Phenology research for natural resource management in the United States. Int J Biometeorol 58(4):579–589. https://doi.org/10.1007/s00484-013-0772-6
Article
Google Scholar
García de Cortázar-Atauri I, Brisson N, Gaudillere JP (2009) Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int J Biometeorol 53(4):317–326. https://doi.org/10.1007/s00484-009-0217-4
Article
Google Scholar
Gerst KL, Kellermann JL, Enquist CAF, Rosemartin AH, Denny EG (2016) Estimating the onset of spring from a complex phenology database: trade-offs across geographic scales. Int J Biometeorol 60(3):391–400. https://doi.org/10.1007/s00484-015-1036-4
Article
Google Scholar
Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16(3):1082–1106. https://doi.org/10.1111/j.1365-2486.2009.02084.x
Article
Google Scholar
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/J.RSE.2017.06.031
Article
Google Scholar
Guo W, Gong J, Jiang W, Liu Y, She B (2010) OpenRS-Cloud: a remote sensing image processing platform based on cloud computing environment. Sci China Technol Sci 53(S1):221–230. https://doi.org/10.1007/s11431-010-3234-y
Article
Google Scholar
Hufkens K, Basler D, Milliman T, Melaas EK, Richardson AD (2018) An integrated phenology modelling framework in r. Methods Ecol Evol 9(5):1276–1285. https://doi.org/10.1111/2041-210X.12970
Article
Google Scholar
Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29(3):597. https://doi.org/10.2307/2404467
Article
Google Scholar
Izquierdo-Verdiguier E, Zurita-Milla R, Ault TR, Schwartz MD (2018) Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agric For Meteorol 262:34–41. https://doi.org/10.1016/J.AGRFORMET.2018.06.028
Article
Google Scholar
Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Model 83(1–2):55–66. https://doi.org/10.1016/0304-3800(95)00084-9
Article
Google Scholar
Kunkel KE, Liang X-Z, Zhu J, Lin Y, Kunkel KE, Liang X-Z et al (2006) Can CGCMs simulate the twentieth-century “Warming Hole” in the Central United States? J Clim 19(17):4137–4153. https://doi.org/10.1175/JCLI3848.1
Article
Google Scholar
Labe Z, Ault TR, Zurita-Milla R (2017) Identifying anomalously early spring onsets in the CESM large ensemble project. Clim Dyn 48(11–12):3949–3966. https://doi.org/10.1007/s00382-016-3313-2
Article
Google Scholar
Leung LR, Qian Y, Bian X, Leung LR, Qian Y, Bian X (2003) Hydroclimate of the Western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal Statistics. J Clim 16(12):1892–1911. https://doi.org/10.1175/1520-0442(2003)016<1892:HOTWUS>2.0.CO;2
Article
Google Scholar
Lieth H (1974) Purposes of a phenology book. Springer, Berlin, pp 3–19. https://doi.org/10.1007/978-3-642-51863-8_1
Book
Google Scholar
Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28(12):1873–1882. https://doi.org/10.1093/treephys/28.12.1873
Article
Google Scholar
Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142(2):307–315. https://doi.org/10.1007/s00442-004-1725-x
Article
Google Scholar
Masle J, Doussinault G, Farquhar GD, Sun B (1989) Foliar stage in wheat correlates better to photothermal time than to thermal time. Plant Cell Environ 12(3):235–247. https://doi.org/10.1111/j.1365-3040.1989.tb01938.x
Article
Google Scholar
Matzarakis A, Mayer H, Chmielewski F-M (2010) Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universit{ä}t Freiburg
McCabe GJ, Ault TR, Cook BI, Betancourt JL, Schwartz MD (2012) Influences of the El Niño southern oscillation and the Pacific decadal oscillation on the timing of the North American spring. Int J Climatol 32(15):2301–2310. https://doi.org/10.1002/joc.3400
Article
Google Scholar
Meehl GA, Arblaster JM, Branstator G, Meehl GA, Arblaster JM, Branstator G (2012) Mechanisms contributing to the warming hole and the consequent U.S. East–west differential of heat extremes. J Clim 25(18):6394–6408. https://doi.org/10.1175/JCLI-D-11-00655.1
Article
Google Scholar
Mehdipoor H, Zurita-Milla R, Rosemartin A, Gerst KL, Weltzin JF (2015) Developing a workflow to identify inconsistencies in volunteered geographic information: a phenological case study. PLoS One 10(10):e0140811. https://doi.org/10.1371/journal.pone.0140811
CAS
Article
Google Scholar
Mehdipoor H, Zurita-Milla R, Augustijn E, van Vliet A (2016) Analyzing phenological synchronicity using volunteered geographic information. Association of Geographic Information Laboratories for Europe (AGILE)
Mehdipoor H, Izquierdo-Verdiguier E, Zurita-Milla R (2017) Continental-scale monitoring and mapping of false spring : a cloud computing solution + powerpoint
Mehdipoor H, Zurita-Milla R, Izquierdo-Verdiguier E, Betancourt JL (2018) Influence of source and scale of gridded temperature data on modelled spring onset patterns in the conterminous United States. Int J Climatol. https://doi.org/10.1002/joc.5857
Menzel A (2005) A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol Z 14(1):75–77. https://doi.org/10.1127/0941-2948/2005/0014-0075
Article
Google Scholar
Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A et al (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109(D7):D07S90. https://doi.org/10.1029/2003JD003823
Article
Google Scholar
Noguchi K, Gel YR, Duguay CR (2011) Bootstrap-based tests for trends in hydrological time series, with application to ice phenology data. J Hydrol 410(3–4):150–161. https://doi.org/10.1016/J.JHYDROL.2011.09.008
Article
Google Scholar
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. https://doi.org/10.1016/J.AGRFORMET.2012.09.012
Article
Google Scholar
Robinson WA (2002) General circulation model simulations of recent cooling in the east-central United States. J Geophys Res 107(D24):4748. https://doi.org/10.1029/2001JD001577
Article
Google Scholar
Rosemartin AH, Denny EG, Weltzin JF, Lee Marsh R, Wilson BE, Mehdipoor H, Zurita-Milla R, Schwartz MD (2015) Lilac and honeysuckle phenology data 1956-2014. Sci Data 2:150038. https://doi.org/10.1038/sdata.2015.38
Article
Google Scholar
Santer B (1985) The use of general circulation models in climate impact analysis: a preliminary study of the impacts of a CO2- induced climatic change on West European agriculture. Clim Chang 7(1):71–93. https://doi.org/10.1007/BF00139442
Article
Google Scholar
Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. Phenol Seas Clim I, 23–38
Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42(3):113–118. https://doi.org/10.1007/s004840050093
Article
Google Scholar
Schwartz MD, Marotz GA (1988) Synoptic events and spring phenology. Phys Geogr 9(2):151–161. https://doi.org/10.1080/02723646.1988.10642345
Article
Google Scholar
Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12(2):343–351. https://doi.org/10.1111/j.1365-2486.2005.01097.x
Article
Google Scholar
Schwartz MD, Betancourt JL, Weltzin JF (2012) From Caprio’s lilacs to the USA National Phenology Network. Front Ecol Environ 10(6):324–327. https://doi.org/10.1890/110281
Article
Google Scholar
Schwartz MD, Ault TR, Betancourt JL (2013) Spring onset variations and trends in the continental United States: past and regional assessment using temperature-based indices. Int J Climatol 33(13):2917–2922. https://doi.org/10.1002/joc.3625
Article
Google Scholar
Thornton PE, Thornton MM, Mayer BW, Wilhelmi N, Wei Y, Devarakonda R, Cook RB (2014) Daymet: daily surface weather data on a 1-km grid for North America, Version 2
van Laarhoven PJM, Aarts EHL (1987) Simulated annealing. In: Simulated Annealing: Theory and Applications. Springer Netherlands, Dordrecht, pp 7–15. https://doi.org/10.1007/978-94-015-7744-1_2
Chapter
Google Scholar
Willmott C, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82. https://doi.org/10.3354/cr030079
Article
Google Scholar
Willmott C, Matsuura K, Robeson SM (2009) Ambiguities inherent in sums-of-squares-based error statistics. Atmos Environ 43(3):749–752. https://doi.org/10.1016/J.ATMOSENV.2008.10.005
CAS
Article
Google Scholar
Willmott C, Robeson S, Matsuura K (2017) Climate and other models may be more accurate than reported. Eos (Washington DC). https://doi.org/10.1029/2017EO074939
Wu X, Zurita-Milla R, Kraak M-J (2016) A novel analysis of spring phenological patterns over Europe based on co-clustering. J Geophys Res Biogeosci 121(6):1434–1448. https://doi.org/10.1002/2015JG003308
Article
Google Scholar
Zavalloni C, Andresen JA, Flore JA (2006) Phenological models of flower bud stages and fruit growth of `Montmorency’ sour cherry based on growing degree-day accumulation. J Am Soc Hortic Sci 131(5):601–607
Article
Google Scholar
Zurita-Milla R, Goncalves R, Izquierdo-Verdiguier E, Ostermann FO (2017) Exploring vegetation phenology at continental scales : linking temperature-based indices and land surface phenological metrics