Skip to main content
Log in

Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices’ sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI’s stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alduchov OA, Eskridge RE (1996) Improved Magnus form approximation of saturation vapor pressure. J Appl Meteorol 35:601–609

    Article  Google Scholar 

  • Bergeron O (2014) Caractérisation de la variabilité spatiale et temporelle de la température de l’air ambiant sur un territoire urbain : étude du cas de la ville de Québec. Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Quebec City

  • Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535

    Article  Google Scholar 

  • Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the Universal Thermal Climate Index (UTCI). Geogr Pol 86:5–10

    Article  Google Scholar 

  • Bleta A, Nastos PT, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14:1967–1981

    Article  Google Scholar 

  • Bröde P, Krüger EL, Rossi FA, Fiala D (2012a) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index (UTCI)—a case study in southern Brazil. Int J Biometeorol 56:471–480

    Article  Google Scholar 

  • Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012b) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494

    Article  Google Scholar 

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11:20–32

    Article  Google Scholar 

  • Burkard K, Schneider A, Breitner S, Khan MH, Krämer A, Endlicher W (2011) The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ Pollut 159:2035–2043

  • Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51:285–295

    Article  Google Scholar 

  • Environment Canada (2014). Spring and summer weather hazards. https://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=6C5D4990-1. Accessed 27 March 2015

  • Environment Canada (2015) Wind chill—the chilling facts. http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=5FBF816A-1. Accesses 27 March 2015

  • Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398

    Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort. Danish Technical, Copenhagen

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model for human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441

    Article  Google Scholar 

  • Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–260

    Google Scholar 

  • Gagge AP, Forbelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–729

    Google Scholar 

  • Havenith G, Fiala D, Błażejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56:461–470

    Article  Google Scholar 

  • Höppe PR (1993) Heat balance modelling. Experientia 49:741–746

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Humphreys MA (1994) Field studies and climate chamber experiments in thermal comfort research. In: Oseland NA, Humphreys MA (eds) Thermal comfort: past, present and future. Building Research Establishment, Watford, pp. 52–69

    Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428

    Article  Google Scholar 

  • Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133

    Article  Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3:90–100

    Google Scholar 

  • Kántor N, Égerházi L, Unger J (2012) Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary. Int J Biometeorol 56:1075–1088

    Article  Google Scholar 

  • Krüger E, Drach P, Emmanuel R, Corbella O (2013) Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK. Int J Biometeorol 57:521–533

    Article  Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic Press, New York

    Google Scholar 

  • Leduc R, Ferland M, Gariépy J, Jacques G, Lelièvre C, Paulin G (1980) Îlot de chaleur à Québec: cas d’été. Bound Layer Meteorol 19:471–480

    Article  Google Scholar 

  • Leduc R, Jacques G, Ferland M, Lelièvre C (1981) Îlot de chaleur à Québec: cas d’hiver. Bound Layer Meteorol 21:315–324

    Article  Google Scholar 

  • Lin TP, de Dear R, Hwang RL (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31:302–312

    Article  Google Scholar 

  • Makaremi N, Salleh E, Jaafar MZ, Hoseini AG (2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139

    Article  Google Scholar 

  • Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in central Europe. Meteorol Z 17:241–250

    Article  Google Scholar 

  • MDDELCC (2015) Normales climatiques 1981–2010. http://www.mddelcc.gouv.qc.ca/climat/normales/climat-qc.htm. Accessed 27 March 2015

  • Minard D, Belding HS, Kingston JR (1957) Prevention of heat casualties. J Am Med Assoc 165:1813–1818

    Article  CAS  Google Scholar 

  • Oliveira S, Andrade H (2007) An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int J Biometeorol 52:69–84

    Article  Google Scholar 

  • Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86:1453–1548

    Article  Google Scholar 

  • Pearlmutter D, Bitan A, Berliner P (1999) Microclimatic analysis of “compact” urban canyons in an arid zone. Atmos Environ 33:4143–4150

    Article  CAS  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Santee WR, Wallace RF (2005) Comparison of weather service heat indices using a thermal model. J Therm Biol 30:65–72

    Article  Google Scholar 

  • Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38:721–738

    Article  Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687

    Article  Google Scholar 

  • Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16

    Google Scholar 

  • Taylor NAS (2006) Challenges to temperature regulation when working in hot environments. Ind Health 44:331–344

    Article  Google Scholar 

  • Thorsson S, Honjo T, Lindberg F, Eliasson I, Lim E (2007a) Thermal comfort and outdoor activity in Japanese urban public places. Environ Behav 39:660–684

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007b) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993

    Article  Google Scholar 

  • Toy S, Yilmaz S (2010) Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theor Appl Climatol 101:329–343

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Environment Canada for supplying the meteorological data at the Jean-Lesage and Sainte-Foy stations, and to Dr. Andreas Matzarakis for providing the RayMan software. This project was funded by the Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Barrette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provençal, S., Bergeron, O., Leduc, R. et al. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. Int J Biometeorol 60, 591–603 (2016). https://doi.org/10.1007/s00484-015-1054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1054-2

Keywords

Navigation