Skip to main content

Advertisement

Log in

Multiple scenarios-based on a hybrid economy–environment–ecology model for land-use structural and spatial optimization under uncertainty: a case study in Wuhan, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The comprehensive optimization analysis of the quantitative structure and spatial allocation of land use is the key research direction of current and future land use planning. There are a lot of uncertain factors in the land use system. However, few studies couple the uncertain factors in the land use system with the spatial layout model. Based on this, the uncertain mathematical model and the spatial allocation model (GeoSOS-FLUS) are coupled to simulate the land use optimal allocation in Wuhan in 2030. The quantitative structure and spatial allocation optimization model of land use under three scenarios of economic development priority, ecological protection priority and low carbon emission priority were predicted. The coupling model solves the quantitative problem of land system uncertainty and applies it to spatial layout. The results show that the coupling model can help decision-makers to make future land use planning from the perspective of economy, ecology and low carbon emissions, and realize the sustainable development of future land use patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Anna K, Jaan-Henrik K, Jakub K, Dagmar H (2016) Ecosystem services in urban land use planning: Integration challenges in complex urban settings—Case of Stockholm. Ecosyst Serv 22:204–212

    Article  Google Scholar 

  • Arjomandi A, Mortazavi SA, Khalilian S, Garizi AZ (2021) Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran. Land Use Pol 100:11

    Article  Google Scholar 

  • Azadi H, Petrescu DC, Petrescu-Mag RM, Ozunu A (2020) Special issue: Environmental risk mitigation for sustainable land use development. Land Use Pol 95:4

    Article  Google Scholar 

  • Carsjens GJ, van der Knaap W (2002) Strategic land-use allocation: dealing with spatial relationships and fragmentation of agriculture. Landsc Urban Plan 58(2–4):171–179

    Article  Google Scholar 

  • Chen YF, Qi J, Zhou JX, Li YP, Xiao J (2004) Dynamic modeling of a man-land system in response to environmental catastrophe. Hum Ecol Risk Assess 10(3):579–593

    Article  Google Scholar 

  • Chen WZ, Zhao L, Kang Q, Di F (2020) Systematizing heterogeneous expert knowledge, scenarios and goals via a goal-reasoning artificial intelligence agent for democratic urban land use planning. Cities 101:15

    Article  Google Scholar 

  • Chigbu UE, Ntihinyurwa PD, de Vries WT, Ngenzi EI (2019) Why tenure responsive land-use planning matters: insights for land use consolidation for food security in Rwanda. Int J Environ Res Public Health 16(8):24

    Article  Google Scholar 

  • Costanza R, dArge R, deGroot R et al (1997) The value of the world's ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Diehl JA, Sweeney E, Wong B, Sia CS, Yao HM, Prabhudesai M (2020) Feeding cities: Singapore's approach to land use planning for urban agriculture. Glob. Food Secur -Agric Policy 26:11

    Google Scholar 

  • Elliot T, Bertrand A, Almenar JB, Petucco C, Proenca V, Rugani B (2019) Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming. Ecol Model 409:11

    Article  Google Scholar 

  • Fang CL, Cui XG, Li GD et al (2019) Modeling regional sustainable development scenarios using the urbanization and eco-environment coupler: case study of Beijing Tianjin-Hebei urban agglomeration, China. Sci Total Environ 689:820–830

    Article  CAS  Google Scholar 

  • Gao PC, Wang HY, Cushman SA, Cheng CX, Song CQ, Ye SJ (2021) Sustainable land-use optimization using NSGA-II: theoretical and experimental comparisons of improved algorithms. Landsc Ecol 36(7):1877–1892

    Article  Google Scholar 

  • Gomes E, Abrantes P, Banos A, Rocha J, Buxton M (2019) Farming under urban pressure: farmers' land use and land cover change intentions. Appl Geogr 102:58–70

    Article  Google Scholar 

  • Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144

    Article  Google Scholar 

  • Guzman LA, Escobar F, Pena J, Cardona R (2020) A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: the case of the Bogota region. Land Use Pol 92:13

    Article  Google Scholar 

  • Hu J, Long YC, Zhou W et al (2020) Influence of different land use types on hydrochemistry and heavy metals in surface water in the lakeshore zone of the Caohai wetland. China Environ Pollut 267:10

    Article  Google Scholar 

  • Hu XJ, Gao L, Ma CM, Hu XJ (2020) Land use zoning of Weifang North Plain based on ecological function and geo-environmental suitability. Bull Eng Geol Environ 79(5):2697–2719

    Article  Google Scholar 

  • Huang Q, Song W (2019) A land-use spatial optimum allocation model coupling a multi-agent system with the shuffled frog leaping algorithm. Comput Environ Urban Syst 77:19

    Article  Google Scholar 

  • Huang DQ, Huang J, Liu T (2019) Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Pol 82:422–435

    Article  Google Scholar 

  • Jalkanen J, Toivonen T, Moilanen A (2020) Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc Ecol 35(2):353–371

    Article  Google Scholar 

  • Karimi A, Adams VM (2019) Planning for the future: combining spatially-explicit public preferences with tenure policies to support land-use planning. Land Use Pol 82:497–508

    Article  Google Scholar 

  • Kong XS, Liu DF, Tian YS, Liu YL (2021) Multi-objective spatial reconstruction of rural settlements considering intervillage social connections. J Rural Stud 84:254–264

    Article  Google Scholar 

  • Kucsicsa G, Popovici EA, Balteanu D, Grigorescu I, Dumitrascu M, Mitrica B (2019) Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database. Landsc Ecol Eng 15(1):75–90

    Article  Google Scholar 

  • Leibowicz BD (2020) Urban land use and transportation planning for climate change mitigation: a theoretical framework. Eur J Oper Res 284(2):604–616

    Article  Google Scholar 

  • Levi Y, Bekhor S, Rosenfeld Y (2019) A multi-objective optimization model for urban planning: the case of a very large floating structure. Transp Res Pt C-Emerg Technol 98:85–100

    Article  Google Scholar 

  • Li CM, Zhang K, Dai ZX, Ma ZT, Liu XL (2020) Investigation of the impact of land-use distribution on PM(2.5) in Weifang: seasonal variations. Int J Environ Res Public Health 17(14):20

    Article  Google Scholar 

  • Li FX, Li ZF, Chen HH, Chen ZJ, Li MC (2020) An agent-based learning-embedded model (ABM-learning) for urban land use planning: a case study of residential land growth simulation in Shenzhen, China. Land Use Pol 95:9

    Article  Google Scholar 

  • Li KM, Feng MM, Biswas A, Su HH, Niu YL, Cao JJ (2020) Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM model: a case study from Gansu Province, China. Sensors 20(10):20

    Article  Google Scholar 

  • Li QG, Wang LC, Gul HN, Li D (2021) Simulation and optimization of land use pattern to embed ecological suitability in an oasis region: a case study of Ganzhou district, Gansu province, China. J Environ Manage 287:10

    Article  Google Scholar 

  • Liang X, Guan QF, Clarke KC, Chen GZ, Guo S, Yao Y (2021) Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc Urban Plan 205:17

    Article  Google Scholar 

  • Liu XP, Liang X, Li X et al (2017) A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc Urban Plan 168:94–116

    Article  Google Scholar 

  • Liu T, Huang DQ, Tan X, Kong FH (2020) Planning consistency and implementation in urbanizing China: comparing urban and land use plans in suburban Beijing. Land Use Pol 94:13

    Article  Google Scholar 

  • Long HL, Liu YQ, Hou XG, Li TT, Li YR (2014) Effects of land use transitions due to rapid urbanization on ecosystem services: implications for urban planning in the new developing area of China. Habitat Int 44:536–544

    Article  Google Scholar 

  • Lu XH, Ke SG (2018) Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int 77:90–98

    Article  Google Scholar 

  • Mohamed A, Worku H (2020) Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban CLim 31:17

    Article  Google Scholar 

  • Namatama N (2020) An assessment of stakeholders' participation in land use planning process of Luapula Province Planning Authority. Land Use Pol 97:21

    Article  Google Scholar 

  • Oleron-Evans TP, Salhab M (2021) Optimal land use allocation for the Heathrow opportunity area using multi-objective linear programming. Land Use Pol 105:29

    Article  Google Scholar 

  • Ou GL, Tan SK, Zhou M et al (2017) An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level. J Environ Manage 204:651–666

    Article  Google Scholar 

  • Penazzi S, Accorsi R, Manzini R (2019) Planning low carbon urban-rural ecosystems: an integrated transport land-use model. J Clean Prod 235:96–111

    Article  Google Scholar 

  • Porta J, Parapar J, Doallo R, Rivera FF, Sante I, Crecente R (2013) High performance genetic algorithm for land use planning. Comput Environ Urban Syst 37:45–58

    Article  Google Scholar 

  • Sharmin N, Haque A, Islam MM (2019) Generating alternative land-use allocation for mixed use areas: multi-objective optimization approach. Geogr Anal 51(4):448–474

    Article  Google Scholar 

  • Siiba A, Adams EA, Cobbinah PB (2018) Chieftaincy and sustainable urban land use planning in Yendi, Ghana: Towards congruence. Cities 73:96–105

    Article  Google Scholar 

  • Strauch M, Cord AF, Patzold C et al (2019) Constraints in multi-objective optimization of land use allocation—repair or penalize? Environ Modell Softw 118:241–251

    Article  Google Scholar 

  • Su L, Fu LH (2021) Regional land planning based on BPNN and space mining technology. Neural Comput Appl 33(10):5241–5255

    Article  Google Scholar 

  • Suhardiman D, Keovilignavong O, Kenney-Lazar M (2019) The territorial politics of land use planning in Laos. Land Use Pol 83:346–356

    Article  Google Scholar 

  • Sun HH, Zhen F, Xie ZM (2021) Urban resilience assessment based on contradiction between supply and demand of the daily activity-environment system: a case study on Nanjing, China. Sci. Total Environ 765

  • Suppakitpaisarn V, Ariyarit A, Chaidee S (2021) A Voronoi-based method for land-use optimization using semidefinite programming and gradient descent algorithm. Int J Geogr Inf Sci 35(5):999–1031

    Article  Google Scholar 

  • Tang LJ, Wang DY (2018) Optimization of county-level land resource allocation through the improvement of allocation efficiency from the perspective of sustainable development. Int J Environ Res Public Health 15(12):19

    Article  Google Scholar 

  • Tongur V, Ertunc E, Uyan M (2020) Use of the migrating birds optimization (MBO) algorithm in solving land distribution problem. Land Use Pol 94:9

    Article  Google Scholar 

  • Turk E, Zwick PD (2019) Optimization of land use decisions using binary integer programming: the case of Hillsborough County, Florida, USA. J Environ Manage 235:240–249

    Article  Google Scholar 

  • Wang XH, Yu S, Huang GH (2004) Land allocation based on integrated GIS-optimization modeling at a watershed level. Landsc Urban Plan 66(2):61–74

    Article  Google Scholar 

  • Wang Y, Li XM, Zhang Q, Li JF, Zhou XW (2018) Projections of future land use changes: multiple scenarios-based impacts analysis on ecosystem services for Wuhan city. China Ecol Indic 94:430–445

    Article  Google Scholar 

  • Wang GZ, Han Q, de Vries B (2021) The multi-objective spatial optimization of urban land use based on low-carbon city planning. Ecol Indic 125:12

    Article  Google Scholar 

  • Wang LY, Zheng WW, Tang LP, Zhang SY, Liu YL, Ke XL (2021) Spatial optimization of urban land and cropland based on land production capacity to balance cropland protection and ecological conservation. J Environ Manage 285:10

    Article  Google Scholar 

  • Wang QZ, Guan QY, Lin JK, Luo HP, Tan Z, Ma YR (2021) Simulating land use/land cover change in an arid region with the coupling models. Ecol Indic 122:17

    Article  Google Scholar 

  • Wang WL, Jiao LM, Jia QQ et al (2021) Land use optimization modelling with ecological priority perspective for large-scale spatial planning. Sust Cities Soc 65:13

    Google Scholar 

  • Wu CY, Chen BW, Huang XJ, Wei YHD (2020) Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol Indic 117:14

    Article  Google Scholar 

  • Xia CY, Chen B (2020) Urban land-carbon nexus based on ecological network analysis. Appl Energy 276:11

    Article  Google Scholar 

  • Xu TT, Gao J, Coco G, Wang SL (2020) Urban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model. Int J Geogr Inf Sci 34(11):2136–2159

    Article  Google Scholar 

  • Yang XN, Sun WY, Li PF, Mu XM, Gao P, Zhao GJ (2019) Integrating agricultural land, water yield and soil conservation trade-offs into spatial land use planning. Ecol Indic 104:219–228

    Article  Google Scholar 

  • Zhang HH, Zeng YNA, Jin XB, Shu BR, Zhou YK, Yang XH (2016) Simulating multi-objective land use optimization allocation using Multi-agent system—a case study in Changsha, China. Ecol Model 320:334–347

    Article  Google Scholar 

  • Zhang RS, Matsushima K, Kobayashi K (2018) Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Pol 74:32–40

    Article  Google Scholar 

  • Zhang Z, Zhou M, Ou GL et al (2019) Land suitability evaluation and an interval stochastic fuzzy programming-based optimization model for land-use planning and environmental policy analysis. Int J Environ Res Public Health 16(21):23

    Article  CAS  Google Scholar 

  • Zhang ZF, Liu J, Gu XK (2019) Reduction of industrial land beyond urban development boundary in shanghai: differences in policy responses and impact on towns and villages. Land Use Pol 82:620–630

    Article  Google Scholar 

  • Zhang YL, Li XY, Wang S, Guo JL, Lv GF (2020) A Multi-objective zoning framework for mineral resources development and management: a case study in Henan Province, China. Nat Resour Res 29(5):3103–3119

    Article  CAS  Google Scholar 

  • Zheng WW, Ke XL, Xiao BY, Zhou T (2019) Optimising land use allocation to balance ecosystem services and economic benefits—a case study in Wuhan, China. J Environ Manage 248:10

    Article  Google Scholar 

  • Zhou M (2015) An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use policy analysis. Land Use Pol 42:479–491

    Article  Google Scholar 

  • Zhou M, Chen Q, Cai YL (2013) Optimizing the industrial structure of a watershed in association with economic–environmental consideration: an inexact fuzzy multi-objective programming model. J Clean Prod 42:116–131

    Article  Google Scholar 

  • Zhu KW, Chen YC, Zhang S et al (2020) Output risk evolution analysis of agricultural non-point source pollution under different scenarios based on multi-model. Glob Ecol Conserv 23:16

    Google Scholar 

  • Zhu WJ, Gao Y, Zhang HB, Liu LL (2020) Optimization of the land use pattern in Horqin Sandy Land by using the CLUMondo model and Bayesian belief network. Sci Total Environ 739:15

    Article  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (No. 41401631).

Author information

Authors and Affiliations

Authors

Contributions

Yuxiang Ma, Min Zhou conceived and designed the research, Mengcheng Wang, Chaonan Ma collected, managed and verified the data, Min Zhou, Yuxiang Ma, Jiating Tu, Siqi Li calculated and analyzed the data and the results. Min Zhou, Yuxiang Ma wrote the manuscript.

Corresponding author

Correspondence to Min Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Statistical data were provided by the open statistical yearbooks of the provinces in the study area. Therefore, ethical approval and participatory consent are not required for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to Zhou (2015) and Zhou et al. (2013), the model (1) can be transformed into:

$$Max {\omega _1}\lambda _{1}^{ \pm }+ {\omega _2}\lambda _{2}^{ \pm }$$
(2a)

subject to:

$$f_{k}^{ \pm }({X^ \pm }) \leqslant f_{k}^{ \pm } - \lambda _{1}^{ \pm }(f_{k}^{+} - f_{k}^{ - }),\quad k = 1,2,\ldots, p,\quad p \ne q$$
(2b)
$$f_{l}^{ \pm }({X^ \pm }) \leqslant f_{l}^{ - } - \lambda _{2}^{ \pm }(f_{l}^{+} - f_{l}^{ - }),\quad l = 1,2,\ldots,q,\quad q \ne p$$
(2c)
$$A_{i}^{ \pm }{X^ \pm } \gtrsim b_{i}^{ - }{\text{+(1-}}{\lambda ^ \pm }{\text{)(}}b_{i}^{+} - b_{i}^{ - })\quad i = 1,2,\ldots,m, \quad i \ne s$$
(2d)
$$A_{s}^{ \pm }{X^ \pm } \leqslant b_{s}^{{({p_s})}}\quad s = 1,2,\ldots,n,\quad s \ne i$$
(2e)
$${X^ \pm } \geqslant 0$$
(2f)
$$0 \leqslant {\lambda ^ \pm } \leqslant 1$$
(2g)

where ω1 and ω2 are weight coefficients; λ± denotes the control decision variable corresponding to the degree (membership grade) to which X± solution fulfills the fuzzy objective or constraints. Model (2) can be divided and solved by a two-step method, and if \({\text{b}}_{\text{i}}^{\pm }\) ≥ 0 and f± ≥ 0, the sub-model corresponding to λ can be formulated as follows:

$$Max\,{\omega _1}\lambda _{1}^{ - }{\text{+}}{\omega _2}\lambda _{2}^{+}$$
(3a)

subject to:

$$\sum\limits_{{s = 1}}^{t} {c_{{k's}}^{+}x_{s}^{+} \leqslant f_{{k'}}^{+} - } \lambda _{1}^{ - }(f_{{k'}}^{+} - f_{{k'}}^{ - }),\quad k'=1,2,\ldots,q$$
(3b)
$$\sum\limits_{{s = 1}}^{t} {c_{{l's}}^{+}x_{s}^{+} \leqslant f_{{l'}}^{ - }+} \lambda _{2}^{+}(f_{{l'}}^{+} - f_{{l'}}^{ - }),\quad l' =q + 1,q + 2,\ldots,2q$$
(3c)
$$\sum\limits_{{s = 1}}^{t} {{{\left| {{a_{is}}} \right|}^ - }sign(a_{{is}}^{ \pm })x_{s}^{+} \leqslant b_{i}^{+} - \lambda _{1}^{ - }} (b_{i}^{+} - b_{i}^{ - }),\quad \forall i$$
(3d)
$$\sum\limits_{{s = 1}}^{t} {{{\left| {{a_{js}}} \right|}^ - }sign(a_{{js}}^{ \pm })x_{s}^{+} \leqslant b_{s}^{{({p_s})}}} ,\quad \forall s,\quad s \ne i$$
(3e)
$$0 \leqslant \lambda _{1}^{ - } \leqslant 1$$
(3f)
$$0 \leqslant \lambda _{2}^{+} \leqslant 1$$
(3g)
$$c_{{k's}}^{{\text{+}}} \geqslant 0$$
(3h)
$$c_{{l's}}^{+} \leqslant 0$$
(3i)
$$x_{s}^{+} \geqslant 0,\quad s = 1,2,\ldots,k$$
(3j)
$$Sign({x^ \pm })=\left\{ \begin{array}{ll} 1,&\,if\,{x^ \pm } \geqslant 0 \hfill \\ - 1,&\,if\,{x^ \pm } \leqslant 0 \hfill \\ \end{array} \right.$$
(3k)

Then, let \(x_{{s{\text{ opt}}}}^{+}\) be solution of sub-model (3). where opt and opt+ denote the upper and lower bounds of the objective's aspiration level as designated by policy makers. The second sub-model corresponding to λ±can be formulated supported by the solution of sub-model (4):

$$Max\,{\omega _1}\lambda _{1}^{+}{\text{+}}{\omega _2}\lambda _{2}^{ - }$$
(4a)

subject to:

$$\sum\limits_{{s = 1}}^{t} {c_{{k's}}^{ - }x_{s}^{ - } \leqslant f_{{k'}}^{+} - } \lambda _{1}^{+}(f_{{k'}}^{+} - f_{{k'}}^{ - }),\quad k'=1,2,\ldots,q$$
(4b)
$$\sum\limits_{{s = 1}}^{t} {c_{{l's}}^{ - }x_{s}^{ - } \leqslant f_{{l'}}^{ - }+} \lambda _{2}^{ - }(f_{{l'}}^{+} - f_{{l'}}^{ - }),\quad l'=q + 1,q + 2,\ldots,2q$$
(4c)
$$\sum\limits_{{s = 1}}^{t} {{{\left| {{a_{is}}} \right|}^+}sign(a_{{is}}^{ \pm })x_{s}^{ - } \leqslant b_{i}^{+} - \lambda _{1}^{+}} (b_{i}^{+} - b_{i}^{ - }),\quad \forall i$$
(4d)
$$\sum\limits_{{s = 1}}^{t} {{{\left| {{a_{js}}} \right|}^+}sign(a_{{js}}^{ \pm })x_{s}^{ - } \leqslant b_{s}^{{({p_s})}}},\quad \forall s,s \ne i$$
(4e)
$$0 \leqslant \lambda _{1}^{+} \leqslant 1$$
(4f)
$$0 \leqslant \lambda _{2}^{ - } \leqslant 1$$
(4g)
$$c_{{k's}}^{ - } \geqslant 0$$
(4h)
$$c_{{l's}}^{ - } \leqslant 0$$
(4i)
$$x_{s}^{ - } \geqslant 0,\quad s = 1,2,\ldots,k$$
(4j)
$$Sign({x^ \pm })=\left\{ \begin{gathered} 1,\,if\,{x^ \pm } \geqslant 0 \hfill \\ - 1,\,if\,{x^ \pm } \leqslant 0 \hfill \\ \end{gathered} \right.$$
(4k)

Then, let \(x_{{s{\text{ opt}}}}^{ - }\) be the solution of sub-model (4). Thus, we can get the interval solutions as follows:

$$\lambda _{{opt}}^{ \pm }=\left[ {\lambda _{{opt}}^{ - },\lambda _{{opt}}^{+}} \right]$$
(4l)
$$x_{{s\,opt}}^{ \pm }=\left[ {x_{{s\,opt}}^{ - },x_{{s\,opt}}^{+}} \right]$$
(4m)

Finally, we can obtain the solution of the optimized objective by substituting (4m) into (2a). The optimized objective \(f_{{{\text{opt}}}}^{ - }\) and \(f_{{{\text{opt}}}}^{+}\) can be calculated as follows:

$$f_{{s\,opt}}^{ \pm }=\left[ {f_{{s\,opt}}^{ - },f_{{s\,opt}}^{+}} \right],\,\forall s$$
(5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, M., Zhou, M. et al. Multiple scenarios-based on a hybrid economy–environment–ecology model for land-use structural and spatial optimization under uncertainty: a case study in Wuhan, China. Stoch Environ Res Risk Assess 36, 2883–2906 (2022). https://doi.org/10.1007/s00477-022-02176-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-022-02176-4

Keywords

Navigation