Skip to main content
Log in

Spatio-temporal modelling of hydro-meteorological derived risk using a Bayesian approach: a case study in Venezuela

  • Review Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Extreme environmental events have considerable impacts on society. Preparation to mitigate or forecast accurately these events is a growing concern for governments. In this regard, policy and decision makers require accurate tools for risk estimation in order to take informed decisions. This work proposes a Bayesian framework for a unified treatment and statistical modeling of the main components of risk: hazard, vulnerability and exposure. Risk is defined as the expected economic loss or population affected as a consequence of a hazard event. The vulnerability is interpreted as the loss experienced by an exposed population due to hazard events. The framework combines data of different spatial and temporal supports. It produces a sequence of temporal risk maps for the domain of interest including a measure of uncertainty for the hazard and vulnerability. In particular, the considered hazard (rainfall) is interpolated from point-based measured rainfall data using a hierarchical spatio-temporal Kriging model, whose parameters are estimated using the Bayesian paradigm. Vulnerability is modeled using zero-inflated distributions with parameters dependent on climatic variables at local and large scales. Exposure is defined as the total population settled in the spatial domain and is interpolated using census data. The proposed methodology was applied to the Vargas state of Venezuela to map the spatio-temporal risk for the period 1970–2006. The framework highlights both high and low risk areas given extreme rainfall events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Banerjee S, Carlin B, Gelfand A (2014) Hierarchical modeling and analysis for spatial data, 2nd edn. CRC Press/Chapman Hall, Boca Raton

    Book  Google Scholar 

  • Bartlett M (1934) On the theory of statistical regression. Proc R Soc Edinb 53:260–283

    Article  Google Scholar 

  • Bravo L et al (2014) Repositorio de Datos Hidroclimáticos para la Gestión de Riesgos Epidemiológicos y Ambientales. USB-UCV-FONACIT, Caracas

    Google Scholar 

  • Cardona O, Carreño M (2011) Updating the indicators of disaster risk and risk management for the Americas. J Integr Disaster Risk Manag 1(1):27–47

    Article  Google Scholar 

  • Centro de Estadística y Matemáticas Aplicadas (2015) Repositorio de Datos Hidroclimáticos para la Gestión de Riesgos Epidemiológicos y Ambientales. https://github.com/CEsMA/ARGUs

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J R Stat Soc Ser C 52(4):405–416

    Article  Google Scholar 

  • Colón L (2013) Sources of societal vulnerability to extreme weather. Master Thesis

  • CRED (2013) Center for research on the epidemiology of disasters. https://www.cred.be. Accessed 2013

  • Cutter S, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. PNAS 105(7):2301–2306

    Article  CAS  Google Scholar 

  • Desinventar (2014) Sistema de inventario de efectos de desastres. https://www.desinventar.org/es/ Accessed 2014–2016

  • Downing T et al (1999) Climate, change and risk. Routledge, London

    Google Scholar 

  • Ediciones Ediarte y Editorial El Nacional (2006) Venezuela en datos 2007. 320 p

  • FUNVISIS (2013) Estudios y Desastres, Fundación Venezolana de Investigaciones Sismológicas. http://www.estudiosydesastres.gob.ve/. Accessed 2013

  • Gamerman D, Lopes H (2006) Markov chain monte carlo: stochastic simulation for bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Garay A, Lachos V, Bolfarine H (2015) Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model. J Appl Stat 42(6):1148–1165. https://doi.org/10.1080/02664763.2014.995610

    Article  Google Scholar 

  • Gelfand A, Ghosh S (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85(1):1–11

    Article  Google Scholar 

  • Gelman A, Meng X, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807

    Google Scholar 

  • Ghosh S, Mukhopadhyay P, Lu J (2006) Bayesian analysis of zero-inflated regression models. J Stat Plan Inference 136(4):1360–1375

    Article  Google Scholar 

  • Gneiting T, Balabdaoui F, Raftery A (2007) Probabilistic forecasts, calibration and sharpness. J R Stat Soc Ser B (Stat Methodol) 69(2):243–268

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/

    Google Scholar 

  • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  Google Scholar 

  • Lapajne J (1981) Social and economic aspects of seismic risk. In: Proceeding of the third international conference: the social and economic aspect of earthquakes and planning to mitigate their impacts. pp 103–112

  • Le N, Zidek J (1992) Interpolation with uncertain spatial covariances: a Bayesian alternative to kriging. J Multivar Anal 43(2):351–374

    Article  Google Scholar 

  • Le N, Zidek J (2006) Statistical analysis of environmental space-time processes. Springer, Berlin

    Google Scholar 

  • Liu B, Siu Y, Mitchell G (2016) A quantitative model for estimating risk from multiple interacting natural hazards: an application to northeast Zhejiang, China. Stoch Environ Res Risk Assess 31:1319–1340. https://doi.org/10.1007/s00477-016-1250-6

    Article  Google Scholar 

  • Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS and Ndash; a Bayesian modelling framework: concepts, structure and extensibility. Stat Comput 10(4):325–337

    Article  Google Scholar 

  • Martínez R (2015) Una aproximación bayesiana a la medición de la vulnerabilidad poblacional a desastres naturales: estudio de caso para el Estado Plurinacional de Bolivia

  • Merz B, Thieken A, Gocht M (2007) Flood risk mapping at the local scale: concepts and challenges. In: Begum S, Stive MJF, Hall JW (eds) Flood risk management in europe. Advances in natural and technological hazards research, vol 25. Springer, Dordrecht, pp 231–251

    Chapter  Google Scholar 

  • Migon H, Gamerman D (2014) Statistical inference: an integrated approach, second edn. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Ming X, Xu W, Li Y, Du J, Liu B, Shi P (2015) Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period. Stoch Environ Res Risk Assess 29(1):35–44

    Article  Google Scholar 

  • Ntzoufras I (2011) Bayesian modeling using WinBUGS, vol 698. Wiley, Hoboken

    Google Scholar 

  • Patt A, Tadross M, Nussbaumer P et al (2010) Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. PNAS 107(4):1333–1337

    Article  CAS  Google Scholar 

  • Plate E (1996) Risk management for hydraulic systems under hydrologic loads. In: Third Kovacs colloquium on risk reliability. Uncertainty and robustness of resources systems. UNESCO, Paris

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rodríguez J, Guenni L (2013) Bayesian analysis of population vulnerability to rainfall events in Venezuela. IDRiM J 3(1):137–154

    Article  Google Scholar 

  • Sajo-Castelli AM, Villalta D, Bravo de Guenni L (2014) A ser sometido a Journal of Statistical Software. A bayesian model for the prediction of hidrometeorological risks: An application to Venezuela

  • Spiegelhalter D, Best N, Carlin B, Van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64(4):583639

    Article  Google Scholar 

  • UNDP (2004) Reducing disaster risk: a challenge for development. Technical report, Bureau for Crisis Prevention and Recovery, Nueva York, USA

  • United Nations (2013) Living with risk: a global review of disaster reduction initiatives. http://www.unisdr.org/we/inform/publications/657. Accessed 2013

  • Velasco M, Cerrillo S (2010) Un Modelo de Regresión Poisson Inflado con Ceros para Analizar datos de un Experimento de Fungicidas en Jitomate. Memoria del 2 Encuentro Iberoamericano de Biometría y la V Reunión de la Región Centroamericana y del Caribe de la Sociedad Internacional de Biometría p 16. ISBN: 9783659052163

  • Velázquez C, Cardona O, Yamín L, Mora CM, Carreño TM, Barbat BH (2013) Hybrid loss exceedance curve (HLEC) for risk assessment. In: Proceedings of the 10th international symposium computational civil engineering: IASI, Romania, May 25th, 2012, Societatea Academica, pp 155–174

  • Vörösmarty C, Bravo de Guenni L, Wollheim W, Pellerin B, Bjerklie D, Cardoso M, D’Almeida C, Green P, Colón L (2013) Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Philos Trans R Soc Lond A Math Phys Eng Sci 371(2002):1–18

    Article  Google Scholar 

  • Yohe G (2002) Indicators for social and economic coping capacity: moving toward a working definition of adaptive capacity. Glob Environ Change 12(1):25–40

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Venezuelan Academy of Physical, Mathematical and Natural Sciences (ACFIMAN), the Inter-American Network of Academies of Sciences (IANAS) and Research and Development Deanery, USB (Grant No. GID-065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bravo de Guenni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 A. 1 Spatial-temporal hierarchical Bayesian Kriging

The components of the rainfall posterior predictive distribution given by Eq. (4) are described as follows.

$$\begin{aligned} {{\,\mathrm{\mathrm {Y}}\,}}_f^{[g]}\,\bigg |\,\texttt {D}&\sim t_g\left( \mu ^{[g]},\;\frac{cc}{l}\;\widehat{\!\psi }_{gg},\;l\right) ,\\ {{\,\mathrm{\mathrm {Y}}\,}}_f^{[u]}\,\bigg |\,{{\,\mathrm{\mathrm {Y}}\,}}_f^{[g]},\texttt {D}&\sim t_u\left( \mu ^{[u]},\;\frac{d}{q}\;\widehat{\!\psi }_{u\,|\,g},\;q\right). \end{aligned}$$
(13)

where l defines the degrees of freedom from the marginal distribution for the observable values and q is the number of degrees of freedom for the conditional distribution of the non-observable values conditioned on the observable values. These should satisfy the conditions: \(l=\delta +n-u-g+1\) and \(q=\delta -u+1\). The values l and q must be positive to avoid degenerate probability distributions. Since l and q decrease when u increases, for a fixed number of observations, the number of new estimation u should be bounded. The components of Eq. (13) are defined as

$$\begin{aligned} \widehat{B}^{[g]}&= A^{-1} CC,\qquad A=\sum _{i=1}^n z_t^\top z_t, \qquad CC=\sum _{i=1}^n z_t^\top {{\,\mathrm{\mathrm {y}}\,}}_t^{[g]},\\ S&=\sum _{i=1}^n \left( {{\,\mathrm{\mathrm {y}}\,}}_t^{[g]}-z_t\widehat{B}^{[g]}\right) ^\top \left( {{\,\mathrm{\mathrm {y}}\,}}_t^{[g]}-z_t\widehat{B}^{[g]}\right) . \end{aligned}$$

\(\widehat{B}^{[g]}\) and S are the usual least-squares estimators. Using the Bartlett’s decomposition (Bartlett 1934), the variance-covariance matrix \(\varSigma \) can be re-parameterized as follows

$$ \varSigma = \begin{bmatrix}\varSigma _{gg}&\varSigma _{u\,|\,g}&\tau \end{bmatrix}, $$

where

\(\varSigma _{gg}\):

is the \((g\times g)\) variance-covariance matrix of \({{\,\mathrm{\mathrm {Y}}\,}}_t^{[g]}\),

\(\varSigma _{u\,|\,g}\):

is defined as \(\varSigma _{u\,|\,g}=\varSigma _{uu}-\varSigma _{ug}\; \varSigma _{gg}^{-1}\; \varSigma _{gu}\) with dimensions \(u\times u\), and

\(\tau \):

is a \((u\times g)\) matrix defined by \(\varSigma _{ug}\;\varSigma _{gg}^{-1}\).

After this re-parameterization, the \(\varSigma \) prior distribution defined in the Eq. (3), can be represented as

$$ \begin{aligned} \varSigma _{gg} \,| \psi ,\,\delta&\sim W_g^{-1}(\psi _{gg},\,\delta -u),\\ \varSigma _{u\,|\,g} \,|\, \psi ,\delta&\sim W_u^{-1}(\psi _{u\,|\,g},\,\delta ),\\ \tau \,|\,\varSigma _{u\,|\,g},\psi&\sim N_{ug}\Big (\tau _0,\,\varSigma _{u\,|\,g}\otimes \psi _{gg}^{-1}\Big ). \end{aligned}$$

The constants describing Eq. (4) are given by the formulas:

$$\begin{aligned} cc&\,=\, 1 + z\,(A+F)^{-1}\, z^{\mathsf {T}}, \\ d&\,=\,1 + z\, F^{-1} z^{\mathsf {T}} + \left( {{\,\mathrm{\mathrm {y}}\,}}_f^{[g]} - z_f\, B_0^{[g]}\right) \; \psi _{gg}^{-1}\; \left( {{\,\mathrm{\mathrm {y}}\,}}_f^{[g]} - z_f\, B_0^{[g]}\right) ^{\!\!T},\\ q&\,=\,\delta -u + 1. \end{aligned}$$

The remaining terms are given by

$$\begin{aligned} \widehat{\!\psi }_{gg}&= \psi _{gg} + S \\&\quad + \left( \widehat{B}^{[g]}-B_0^{[g]}\right) ^{\mathsf {T}}\left( A^{-1} + F^{-1} \right) ^{-1} \left( \widehat{B}^{[g]}-B_0^{[g]} \right) ,\\ \mu ^{[g]}&= (I-W)\;\widehat{B}^{[g]} + W B_0^{[g]}, \qquad W=(A+F)^{-1} F^{-1}\\ \mu ^{[u]}&= z_f\; B_0^{[u]} + \tau _0 \left( {{\,\mathrm{\mathrm {y}}\,}}_f^{[g]} - z_f B_0^{[g]}\right) , \end{aligned}$$

and the final model for \({{\,\mathrm{\mathrm {Y}}\,}}\) is

$$ \begin{aligned} {{\,\mathrm{\mathrm {Y}}\,}}\,|\, \beta ,\,\varSigma&\sim N(Z\,\beta ,\,I_n \otimes \varSigma ),\\ \beta \,|\, \varSigma ,\beta _0&\sim N(\beta _0,\,F^{-1}\otimes \varSigma ),\\ \varSigma&\sim \text{ GIW }(\varTheta ,\,\delta ). \end{aligned}$$

where \(N(\,,\,)\) denotes a Gaussian Multivariate distribution; \(\beta _0\) is the hyper-parameter mean vector of the \(\beta \) coefficients, with dimensions \(l\times (g+u)\); \(F^{-1}\) is a \(l\times l\) matrix describing the variance among the l rows of \(\beta \); Z is the covariates matrix and GIW denotes the generalized inverse Wishart distribution with parameters \((\varTheta ,\,\delta )\). The hyper-parameter vector \(\mathcal {H}\) is the set \({\varTheta ,\,\delta ,\,F,\,\beta _0}\). The coefficient matrix \(\beta : l\times (u+g)\) and the covariance matrix \(\varSigma : (u+g)\times (u+g)\) can be partitioned according to the block data structure.

1.2 A. 2 Conditional probability distributions for the hierarchical zero-inflated negative binomial model

The conditional posterior probability distribution for the parameter vector \(\varvec{\beta }\) is given by

$$\begin{aligned} {{\,\mathrm{\mathsf {P}}\,}}(\varvec{\beta } \,|\,\varvec{C}, \varvec{\zeta }_{-\varvec{\beta }})&\propto {{\,\mathrm{\mathsf {P}}\,}}(\varvec{C} \,|\,\varvec{\zeta }){{\,\mathrm{\mathsf {P}}\,}}(\varvec{\beta } \,|\,\sigma ^2_{\beta })\\&\propto \sum _{\begin{array}{c} t\;|\; c_t=0 \end{array}} \log \left[ (1-\pi _{t})+ \pi _{t} \left( \frac{\theta _{t}}{\exp (\varvec{x}_t^{\mathsf {T}} \varvec{\beta })+ \theta _{t}}\right) ^{\!\!\theta _{t}} \right] \\&\quad +\sum _{\begin{array}{c} t\;|\; c_t>0 \end{array}}\left[ c_{t}\; \varvec{x}_t^{\mathsf {T}} \varvec{\beta }- \log (\exp (\varvec{x}_t^{\mathsf {T}} \varvec{\beta } +\theta _{t} ))\right] \\&\quad \times \frac{\exp (\frac{-\varvec{\beta }^2}{2 \sigma _{\varvec{\beta }}^2})}{\sigma _{\beta }^2}. \end{aligned}$$

The posterior conditional distribution for \(\varvec{\gamma }\) is

$$\begin{aligned} {{\,\mathrm{\mathsf {P}}\,}}(\varvec{\gamma } \,|\,\varvec{C}, \varvec{\zeta }_{-\varvec{\gamma }})&\propto {{\,\mathrm{\mathsf {P}}\,}}(\varvec{C} \,|\,\varvec{\zeta }){{\,\mathrm{\mathsf {P}}\,}}(\varvec{\gamma } \,|\,\sigma ^2_{\gamma })\\&\propto \sum _{t\;|\; c_t>0} \log \left[ \frac{\exp (\varvec{g}_t^{\mathsf {T}}\varvec{\gamma })}{1+ \exp (\varvec{g}_t^{\mathsf {T}}\varvec{\gamma })}\right] \frac{\exp (\frac{-\varvec{\gamma }^2}{2 \sigma _{\gamma }^2})}{\sigma _{\gamma }^2}. \end{aligned}$$

The conditional posterior distributions for \(\sigma ^2_{\beta }\) and \(\sigma ^2_{\gamma }\) are

$$\begin{aligned} {{\,\mathrm{\mathsf {P}}\,}}(\sigma ^2_{\beta } \,|\,\varvec{C}, \zeta _{-\sigma ^2_{\beta }})&\propto {{\,\mathrm{\mathsf {P}}\,}}(\varvec{\beta } \,|\,\sigma ^2_{\beta }){{\,\mathrm{\mathsf {P}}\,}}(\sigma ^2_{\beta })\\&\propto \frac{1}{\sigma ^2_{\beta }} \exp \left( \frac{-\varvec{\beta }^2}{2 \sigma _{\beta }^2}\right) (\sigma ^2_{\beta })^{(a_{\beta }-1)} \exp (-b_{\beta }\sigma ^2_{\beta })\\&\propto (\sigma ^2_{\beta })^{(a_{\beta }-2)} \exp \left( \frac{-(\varvec{\beta }^{\mathsf {T}}\varvec{\beta }+2b_{\beta }\sigma ^4_{\beta })}{2b_{\beta }\sigma ^2_{\beta }} \right) .\\ {{\,\mathrm{\mathsf {P}}\,}}(\sigma ^2_{\gamma } \,|\,\varvec{C}, \varvec{\zeta }_{-\sigma ^2_{\gamma }})&\propto {{\,\mathrm{\mathsf {P}}\,}}(\varvec{\gamma }\,|\,\sigma ^2_{\gamma }){{\,\mathrm{\mathsf {P}}\,}}(\sigma ^2_{\gamma })\\&\propto (\sigma ^2_{\gamma })^{(a_{\gamma }-2)} \exp \left( \frac{-(\varvec{\gamma }^{\mathsf {T}}\varvec{\gamma }+2b_{\gamma }\sigma ^4_{\gamma })}{2b_{\gamma }\sigma ^2_{\gamma }} \right) . \end{aligned}$$

Finally, the posterior conditional distribution for \(\varvec{\theta }\) is given by

$$\begin{aligned} {{\,\mathrm{\mathsf {P}}\,}}(\varvec{\theta } \,|\,\varvec{C},\varvec{\zeta }_{-\varvec{\theta }})&\propto {{\,\mathrm{\mathsf {P}}\,}}(\varvec{C} \,|\,\varvec{\zeta }){{\,\mathrm{\mathsf {P}}\,}}(\varvec{\theta })\\&\propto \sum _{\begin{array}{c} t= 1;{}\\ c_t=0 \end{array}}^{T} \log \left[ (1- \pi _t)+ \pi _t \left( \frac{\theta _t}{\exp (\varvec{x}_t^{\mathsf {T}}\varvec{\beta })+\theta _t}\right) ^{\!\!\theta _t}\right] \\&\quad +\sum _{t\;|\; c_t>0} \log \left[ \varGamma (c_t+\theta _t)\right] - \log (\varGamma (\theta _t))+ \theta _t\log (\theta _t)\\&\quad -\log (\exp (\varvec{x}_t^{\mathsf {T}}\varvec{\beta })+ \theta _t)(\theta _t+ c_{t}) \theta _{t}^{(a_{\theta }-1)}\exp ^{(-b_{\theta } \theta _{t})}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalta, D.E., Bravo de Guenni, L. & Sajo-Castelli, A.M. Spatio-temporal modelling of hydro-meteorological derived risk using a Bayesian approach: a case study in Venezuela. Stoch Environ Res Risk Assess 34, 513–529 (2020). https://doi.org/10.1007/s00477-020-01783-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01783-3

Keywords

Navigation