Skip to main content
Log in

Spectral band decomposition combined with nonlinear models: application to indoor formaldehyde concentration forecasting

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper proposes a new approach for forecasting continuous indoor air quality time series and in particular the concentration of a common air pollutant in offices like formaldehyde. Forecasting is achieved through the combination of the spectral band decomposition using fast Fourier transform and nonlinear time series modeling. Two nonlinear models have been tested: a threshold autoregressive (TAR) model and a Chaos dynamics-based modeling. This study shows the benefit of the Fourier decomposition coupled with nonlinear modeling of each extracted component, compared to forecasting applied directly on the raw data. Both TAR and Chaos dynamics models are able to reproduce nonlinearities, with slightly better performance in the case of the second model. These hybrid models provide good performance on forecast time horizon up to 12 h ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarbanel H (2012) Analysis of observed chaotic data. Institute for Nonlinear Science, Springer, New York

    Google Scholar 

  • Abarbanel HD, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical systems. Rev Mod Phys 65(4):1331–1392

    Article  Google Scholar 

  • AFSSET (2007) Indoor air quality guideline value for formaldehyde. AFSSET, Maisons-Alfort

    Google Scholar 

  • Bao Y, Lee TH, Saltoğlu B (2007) Comparing density forecast models. J Forecast 26(3):203–225

    Article  Google Scholar 

  • Berge A, Mellegaard B, Hanetho P, Ormstad E (1980) Formaldehyde release from particleboard: evaluation of a mathematical model. Eur J Wood Wood Prod 38(7):251–255

    Article  CAS  Google Scholar 

  • Berrocal VJ, Raftery AE, Gneiting T, Steed RC (2010) Probabilistic weather forecasting for winter road maintenance. J Am Stat Assoc 105(490):522–537

    Article  CAS  Google Scholar 

  • Bourdin D, Mocho P, Desauziers V, Plaisance H (2014) Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution. J Hazard Mater 280:164–173

    Article  CAS  Google Scholar 

  • Bradley E, Kantz H (2015) Nonlinear time-series analysis revisited. Chaos 25(9):097610

    Article  Google Scholar 

  • Buzug T, Pfister G (1992) Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Phys Rev A 45(10):7073–7084

    Article  CAS  Google Scholar 

  • Cao L, Soofi AS (1999) Nonlinear deterministic forecasting of daily dollar exchange rates. Int J Forecast 15(4):421–430

    Article  Google Scholar 

  • Cao L, Hong Y, Fang H, He G (1995) Predicting chaotic time series with wavelet networks. Phys D 85(1):225–238

    Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Phys D 35(3):335–356

    Article  Google Scholar 

  • Casdagli M (1992) Chaos and deterministic versus stochastic non-linear modelling. J R Stat Soc Ser B (Methodological) 54(2):303–328

    Google Scholar 

  • Casdagli M, Eubank S (1992) Nonlinear modeling and forecasting. In: Proceedings of the workshop on nonlinear modeling and forecasting, Sept 1990. Addison-Wesley Publishing Company, Santa Fe Institute

  • Casdagli M, Eubank S, Farmer JD, Gibson J (1991) State space reconstruction in the presence of noise. Phys D 51(1):52–98

    Article  Google Scholar 

  • Chan KS, Tong H (1986) On estimating thresholds in autoregressive models. J Time Ser Anal 7(3):179–190

    Article  Google Scholar 

  • Clements M, Hendry D (1998) Forecasting economic time series, vol 1. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59(8):845–848

    Article  CAS  Google Scholar 

  • Fassò A, Negri I (2002a) Multi-step forecasting for nonlinear models of high frequency ground ozone data: a monte carlo approach. Environmetrics 13(4):365–378

    Article  Google Scholar 

  • Fassò A, Negri I (2002b) Non-linear statistical modelling of high frequency ground ozone data. Environmetrics 13(3):225–241

    Article  Google Scholar 

  • Franses P, van Dijk D (2000) Non-linear time series models in empirical finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33(2):1134–1140

    Article  CAS  Google Scholar 

  • Garland J, Bradley E (2015) Prediction in projection. Preprint arXiv:150301678

  • Geweke J, Terui N (1993) Bayesian threshold autoregressive models for nonlinear time series. J Time Ser Anal 14(5):441–454

    Article  Google Scholar 

  • Granger CWJ (1998) Extracting information from mega-panels and high-frequency data. Stat Neerl 52(3):258–272

    Article  Google Scholar 

  • Hegger R, Kantz H, Schreiber T (1999) Practical implementation of nonlinear time series methods: the TISEAN package. Chaos: an interdisciplinary. J Nonlinear Sci 9(2):413–435

    Google Scholar 

  • Hoskins JA (2003) Health effects due to indoor air pollution. Indoor Built Environ 12(6):427–433

    Article  CAS  Google Scholar 

  • IARC (2006) IARC monographs on the evaluation of carcinogenic risks to humans. Volume 88: formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564

    Article  CAS  Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 2. Cambridge nonlinear science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Kember G, Flower A, Holubeshen J (1993) Forecasting river flow using nonlinear dynamics. Stoch Hydrol Hydraul 7(3):205–212

    Article  Google Scholar 

  • Kennel MB, Abarbanel HD (2002) False neighbors and false strands: a reliable minimum embedding dimension algorithm. Phys Rev E 66(2):026,209

    Article  Google Scholar 

  • Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6):3403–3411

    Article  CAS  Google Scholar 

  • Kugiumtzis D (1996) State space reconstruction parameters in the analysis of chaotic time series the role of the time window length. Phys D 95(1):13–28

    Article  Google Scholar 

  • Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646

    Article  Google Scholar 

  • Lu X, Clements-Croome D, Viljanen M (2010a) Integration of chaos theory and mathematical models in building simulation: part I: literature review. Autom Constr 19(4):447–451

    Article  Google Scholar 

  • Lu X, Clements-Croome D, Viljanen M (2010b) Integration of chaos theory and mathematical models in building simulation: part II: conceptual frameworks. Autom Constr 19(4):452–457

    Article  Google Scholar 

  • Mendez M, Blond N, Blondeau P, Schoemaecker C, Hauglustaine DA (2015) Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved inca-indoor model. Atmos Environ 122:521–530

    Article  CAS  Google Scholar 

  • Nazaroff WW, Cass GR (1986) Mathematical modeling of chemically reactive pollutants in indoor air. Environ Sci Technol 20(9):924–934

    Article  CAS  Google Scholar 

  • NTP (2011) NTP 12th report on carcinogens

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Perron P, Vogelsang TJ (1992) Nonstationarity and level shifts with an application to purchasing power parity. J Bus Econ Stat 10(3):301–320

    Google Scholar 

  • Pinson P (2012) Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions. J R Stat Soc Ser C (Appl Stat) 61(4):555–576. https://doi.org/10.1111/j.1467-9876.2011.01026.x

    Article  Google Scholar 

  • Quandt RE (1958) The estimation of the parameters of a linear regression system obeying two separate regimes. J Am Stat Assoc 53(284):873–880

    Article  Google Scholar 

  • Ryan PB, Spengler JD, Halfpenny PF (1988) Sequential box models for indoor air quality: application to airliner cabin air quality. Atmos Environ (1967) 22(6):1031–1038. https://doi.org/10.1016/0004-6981(88)90333-2

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110(4):2536–2572

    Article  CAS  Google Scholar 

  • Sarno L, Valente G (2004) Comparing the accuracy of density forecasts from competing models. J Forecast 23(8):541–557. https://doi.org/10.1002/for.930

    Article  Google Scholar 

  • SCHER (2007) Opinion on risk assessment on indoor air quality, European commission: Brussels (scientific committee on health and environmental risks)

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980, vol 898. Lecture notes in mathematics. Springer, Berlin, pp 366–381

    Chapter  Google Scholar 

  • Tong H (1983) Threshold models in non-linear time series analysis, vol 21. Lecture notes in statistics. Springer, Berlin

    Google Scholar 

  • Tong H (1990) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

    Google Scholar 

  • Tong H (1993) Non-linear time series: a dynamical system approach. Dynamical system approach. Clarendon Press, Oxford

    Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data. J R Stat Soc Ser B (Methodological) 42(3):245–292

    Google Scholar 

  • Tongal H, Berndtsson R (2014) Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels. Stoch Env Res Risk Assess 28(4):955–971

    Article  Google Scholar 

  • WHO (2010) Who guidelines for indoor air quality: selected pollutants. WHO, Geneva

    Google Scholar 

  • Yu B, Huang C, Liu Z, Wang H, Wang L (2011) A chaotic analysis on air pollution index change over past 10 years in Lanzhou, northwest China. Stoch Env Res Risk Assess 25(5):643–653

    Article  Google Scholar 

  • Zhang Y, Luo X, Wang X, Qian K, Zhao R (2007) Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos Environ 41(15):3203–3216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the French research program on air quality (PRIMEQUAL) through the Grant No 12-MRES-PRIMEQUAL-4-CVS-09. The autors are grateful to the reviewers who contributed to the manuscript quality improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Ouaret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaret, R., Ionescu, A., Petrehus, V. et al. Spectral band decomposition combined with nonlinear models: application to indoor formaldehyde concentration forecasting. Stoch Environ Res Risk Assess 32, 985–997 (2018). https://doi.org/10.1007/s00477-017-1510-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1510-0

Keywords

Navigation