Skip to main content
Log in

Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Lake water level forecasting is very important for an accurate and reliable management of local and regional water resources. In the present study two nonlinear approaches, namely phase-space reconstruction and self-exciting threshold autoregressive model (SETAR) were compared for lake water level forecasting. The modeling approaches were applied to high-quality lake water level time series of the three largest lakes in Sweden; Vänern, Vättern, and Mälaren. Phase-space reconstruction was applied by the k-nearest neighbor (k-NN) model. The k-NN model parameters were determined using autocorrelation, mutual information functions, and correlation integral. Jointly, these methods indicated chaotic behavior for all lake water levels. The correlation dimension found for the three lakes was 3.37, 3.97, and 4.44 for Vänern, Vättern, and Mälaren, respectively. As a comparison, the best SETAR models were selected using the Akaike Information Criterion. The best SETAR models in this respect were (10,4), (5,8), and (7,9) for Vänern, Vättern, and Mälaren, respectively. Both model approaches were evaluated with various performance criteria. Results showed that both modeling approaches are efficient in predicting lake water levels but the phase-space reconstruction (k-NN) is superior to the SETAR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abarbanel HDI, Brown R, Kadtke JB (1990) Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra. Phys Rev A 41:1782–1807

    Article  Google Scholar 

  • Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical systems. Rev Mod Phys 65(4):1331–1392

    Article  Google Scholar 

  • Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour Manage 21:399–408

    Article  Google Scholar 

  • Amendola A, Storti G (2001) Nonlinear model for forecasting hydrological time series. In: Piccolo D, Ubertini L (eds) Metodi Statistici e Matematici per l’Analisi delle Serie Idrologicle. pp 1–9

  • Amendola A, Niglio M, Vitale C (2006a) The moments of SETARMA models. J Stat Probab Lett 76:625–633

    Article  Google Scholar 

  • Amendola A, Niglio M, Vitale C (2006b) Multi-step SETARMA predictors in the analysis of hydrological time series. Phys Chem Earth Parts A/B/C 31(18):1118–1126

    Article  Google Scholar 

  • Asefa T, Kemblowski M, Lall U, Urroz G (2005) Support vector machines for nonlinear state space reconstruction: application to the great salt lake time series. Water Resour Res 41(12):10

    Article  Google Scholar 

  • Baratta D, Cicioni G, Masulli F, Studer L (2003) Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Netw 16:375–387

    Article  Google Scholar 

  • Boero G, Marrocu E (2002) The performance of non-linear exchange rate models: a forecasting comparison. J Forecast 21:513–542

    Article  Google Scholar 

  • Chen C-S, Liu C-H, Su H-C (2008) A nonlinear time series analysis using two-stage genetic algorithms for streamflow forecasting. Hydrol Process 22(18):3697–3711. doi:10.1002/hyp.6973

    Article  Google Scholar 

  • Dahl M, Pers BC (2004) Comparison of four models simulating phosphorus dynamics in Lake Vänern, Sweden. Hydrol Earth Syst Sci 8(6):1153–1163

    Article  CAS  Google Scholar 

  • de Vos NJ, Rientjes THM (2005) Constraints of artificial neural networks for rainfall-runoff modeling: trade-offs in hydrological state representation and model evaluation. Hydrol Earth Syst Sci 9:111–126

    Article  Google Scholar 

  • Dunning C (2009) Hydrological modeling of the upper South Saskatchewan River Basin: multi-basin calibration and gauge de-clustering analysis. University of Waterloo, Waterloo

    Google Scholar 

  • Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  • Frazer AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33(2):1134–1140

    Article  Google Scholar 

  • Frison T, Abarbanel H, Earle M, Schultz J, Sheerer W (1999) Chaos and predictability in ocean water level measurements. J Geophys Res Oceans 104:7935–7951

    Article  Google Scholar 

  • Güldal V, Tongal H (2010) Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecasting. Water Resour Manage 24:105–128

    Article  Google Scholar 

  • Hu TS, Lam KC, Ng ST (2001) River flow time series prediction with a range-dependent neural network. Hydrol Sci 46(5):729–745

    Article  Google Scholar 

  • Hu TS, Wu FY, Zhang X (2007) Rainfall-runoff modeling using principal component analysis and neural network. Nord Hydrol 38(3):235–248

    Article  Google Scholar 

  • Islam MN, Sivakumar B (2002) Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv Water Resour 25(2):179–190

    Article  Google Scholar 

  • Jain KS, Sudheer KP (2008) Fitting of hydrologic models: a close look at the Nash-Sutcliffe Index. J Hydrol Eng 10:918–986

    Google Scholar 

  • Jayawardena AW, Gurung AB (2000) Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J Hydrol 228:242–264

    Article  Google Scholar 

  • Josefsson M, Andersson B (2001) The environmental consequences of alien species in the Swedish lakes Mälaren, Hjälmaren, Vänern and Vättern. Ambio 30(8):514–521

    CAS  Google Scholar 

  • Khatibi R, Ghorbani M, Aalami M, Kocak K, Makarynskyy O, Makarynska D, Aalinezhad M (2011) Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective. Ocean Dyn 61(11):1797–1807. doi:10.1007/s10236-011-0466-8

    Article  Google Scholar 

  • Khatibi R, Sivakumar B, Ghorbani MA, Kisi O, Koçak K, Farsadi Zadeh D (2012) Investigating chaos in river stage and discharge time series. J Hydrol 414–415:108–117. doi:10.1016/j.jhydrol.2011.10.026

    Article  Google Scholar 

  • Khokhlov V, Glushkov A, Loboda N, Serbov N, Zhurbenko K (2008) Signatures of low-dimensional chaos in hourly water level measurements at coastal site of Mariupol, Ukraine. Stoch Env Res Risk Assess 22:777–787

    Article  Google Scholar 

  • Kitanidis PK, Bras RL (1980) Real-time forecasting with a conceptual hydrologic model 2. Applications and results. Water Resour Res 16:1034–1044

    Article  Google Scholar 

  • Komorník J, Komornikova M, Mesiar R, Szökeova D, Szolgay J (2006) Comparison of forecasting performance of nonlinear models of hydrological time series. Phys Chem Earth 31:1127–1145

    Article  Google Scholar 

  • Kozhevnikova IA, Shveikina VI (2008) Nonlinear dynamics of level variations in the Caspian Sea. Water Resour 35(3):297–304. doi:10.1134/s0097807808030056

    Article  CAS  Google Scholar 

  • Kvarnäs H (2001) Morphometry and hydrology of the four large lakes of Sweden. Ambio 30(8):467–474

    Google Scholar 

  • Laio F, Porporato A, Revelli R, Ridolfi L (2003) A comparison of nonlinear flood forecasting methods. Water Resour Res 39(5):1129. doi:10.1029/2002WR001551

    Article  Google Scholar 

  • Lall UT, Abarbanel H (1996) Nonlinear dynamics of the great salt lake: nonparametric short-term forecasting. Water Resour Res 32(4):975–985

    Article  Google Scholar 

  • Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour Res 32(3):679–693

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ (2011) Identification of model order and number of neighbors for k-nearest neighbor resampling. J Hydrol 404(3–4):136–145. doi:10.1016/j.jhydrol.2011.04.024

    Article  Google Scholar 

  • Li Q, Sun R, Tricaud C, Chen Y (2007) Great Salt Lake surface level forecasting using FIGARCH modeling. International design engineering technical conferences and computers and information in engineering conference. University of Nevada, Las Vegas, pp 1–10

    Google Scholar 

  • Lisi F, Villi V (2001) Chaotic forecasting of discharge time series: a case study. J Am Water Resour Assoc 37(2):271–279

    Article  Google Scholar 

  • Lisi F, Nicolis O, Sandri M (1995) Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Process Lett 2(4):6–10

    Article  Google Scholar 

  • Liu Q, Islam S, Rodriguez-Iturbe I, Le Y (1998) Phase-space analysis of daily streamflow: characterization and prediction. Adv Water Resour 21(6):463–475

    Article  Google Scholar 

  • Marques CAF, Ferreira J, Rocha A, Castanheira J, Gonçalves P, Vaz N, Dias JM (2006) Singular spectral analysis and forecasting of hydrological time series. Phys Chem Earth 31:1172–1179

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, Part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Ng WW, Panu US, Lennox WC (2007) Chaos based analytical techniques for daily extreme hydrological observations. J Hydrol 342:17–41

    Article  Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Phoon K, Islam M, Liaw C, Liong S (2002) Practical inverse approach for forecasting nonlinear hydrological Time series. J Hydrol Eng 7(2):116–128

    Article  Google Scholar 

  • Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367

    Article  Google Scholar 

  • Randrianasolo A, Ramos MH, Andréassian V (2011) Hydrological ensemble forecasting at ungauged basins: using neighbour catchments for model setup and updating. Adv Geosci 29:1–11. doi:10.5194/adgeo-29-1-2011

    Article  Google Scholar 

  • Regonda SK, Sivakumar B, Jain A (2004) Temporal scaling in river flow: can it be chaotic? Hydrol Sci J 49(3):373–385

    Google Scholar 

  • Reinart A, Reinhold M (2008) Mapping surface temperature in large lakes with MODIS data. Remote Sens Environ 112:603–611

    Article  Google Scholar 

  • Schuster HG (1988) Deterministic Chaos. VCH, Weinheim

    Google Scholar 

  • Sharma A, Tarboton DG, Lall U (1997) Streamflow simulation: a nonparametric approach. Water Resour Res 33(2):291–308

    Article  Google Scholar 

  • Sivakumar B (2003) Forecasting monthly streamflow dynamics in the western United States: a nonlinear dynamical approach. Environ Model Softw 18(8–9):721–728

    Article  Google Scholar 

  • Sivakumar B (2004) Dominant processes concept in hydrology: moving forward. Hydrol Process 18(12):2349–2353

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW (2002) An investigation of the presence of low-dimensional chaotic behaviour in the sediment transport phenomenon. Hydrol Sci J 47(3):405–416

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW, Fernando TMKG (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265(1–4):225–245

    Article  Google Scholar 

  • Sivapragasam C, Liong SY, Pasha MFK (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinformatics 3(7):141–152

    Google Scholar 

  • St-Hilaire A, Ouarda TBMJ, Bargaoui Z, Daigle A, Bilodeau L (2012) Daily river water temperature forecast model with a k-nearest neighbour approach. Hydrol Process 26:1302–1310

    Article  Google Scholar 

  • Strömbeck N, Pierson DC (2001) The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. Sci Total Environ 268:123–137

    Article  Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741

    Article  CAS  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Jung LS (eds) Dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer-Verlag, Berlin, p 366

    Google Scholar 

  • Tong H (1978) On threshold model. Pattern recognition and signal processing. Sijhoff and Noordhoff, Amsterdam

    Google Scholar 

  • Tong H (1983) Threshold models in nonlinear time series analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Tong H (1990) Non-linear time series: a dynamical system approach. Clarendon Press, Oxford

    Google Scholar 

  • Tongal H, Demirel MC, Booij MJ (2013) Seasonality of low flows and dominant processes in the Rhine River. Stoch Env Res Risk Assess 27(2):489–503. doi:10.1007/s00477-012-0594-9

    Article  Google Scholar 

  • Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239(1–4):132–147. doi:10.1016/S0022-1694(00)00344-9

    Article  Google Scholar 

  • Tsay RS (1989) Testing and modelling multivariate threshold models. J Am Stat Assoc 93:1188–1202

    Article  Google Scholar 

  • Tsonis AA, Elsner JB (1988) The weather attractor over very short timescales. Nature 333:545–547

    Article  Google Scholar 

  • Wang W (2006) Stochasticity, nonlinearity and forecasting of streamflow processes. Nanjing University, Nanjing

    Google Scholar 

  • Weyhenmeyer GA, Westöö AK, Willén E (2008) Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia. doi:10.1007/s10750-007-9188-9

    Google Scholar 

  • Willén E (2001) Four decades of research on the Swedish Large Lakes Mälaren, Hjälmaren, Vättern and Vänern: the significance of monitoring and remedial measures for a sustainable society. J Hum Environ 30(8):458–466

    Google Scholar 

  • Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23:1350–1367

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45(8):W08432. doi:10.1029/2007wr006737

    Article  Google Scholar 

  • Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389(1–2):146–167. doi:10.1016/j.jhydrol.2010.05.040

    Article  Google Scholar 

  • Yarar A, Onüçyıldız M, Copty NK (2009) Modelling level change in lakes using neuro-fuzzy and artificial neural networks. J Hydrol 365:329–334

    Article  Google Scholar 

  • Zaldivar JM, Gitiêrrez E, Galvân IM, Strozzi F, Tomasin A (2000) Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks. J Hydroinformatics 2:61–84

    Google Scholar 

Download references

Acknowledgments

R. Berndtsson acknowledges helpful funding from the MECW project at the Center for Middle Eastern Studies, Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Tongal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tongal, H., Berndtsson, R. Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels. Stoch Environ Res Risk Assess 28, 955–971 (2014). https://doi.org/10.1007/s00477-013-0795-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0795-x

Keywords

Navigation