Skip to main content
Log in

Markov based transition probability geostatistics in groundwater applications: assumptions and limitations

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Markov based transition probability geostatistics (MTPG) for categorical variables, as implemented by the methodological framework introduced by Carle and Fogg (Math Geol 29(7):891–918, 1997) and extended thereafter, have been extensively applied for the three-dimensional (3D) statistical representation of hydrofacies in real-world aquifers, and the conditional simulation of 3D lithologies for groundwater flow and transport simulations. While conceptually simple and easy to implement, conditional simulation using the MTPG approach is not limitation free. However, to the best of our knowledge, there is no study that raises such concerns in the light of theoretical arguments and numerical findings. That said, the purpose of this study is twofold: (1) present a brief and coherent overview of the basic theory, fundamental assumptions, and limitations of the MTPG methodological framework, and (2) assess its capabilities on the basis of a simple two-dimensional test-case, using large ensembles of stochastic realizations. Contrary to real-world 3D aquifers, where the actual geology is unknown, and the quality of the simulations can be assessed solely on the basis of semi-quantitative arguments using properly selected sets of stochastic realizations, test-cases allow for direct quantitative assessments based on the application of statistical measures to large ensembles of synthetic realizations. Our analysis and obtained results show that stochastic modeling of actual geologies using the MTPG approach of Carle and Fogg (1997), is characterized by simplifying assumptions and theoretical limitations, with the simulated random fields exhibiting statistical structures that strongly depend on the problem under consideration and the modeling assumptions made, leading to increased epistemic uncertainties in the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agterberg FP (1974) Geomathematics. Elsevier Scientific Publ. Co., Amsterdam and New York, p 596

    Google Scholar 

  • Almeida AS, Journel AG (1994) Joint simulation of multiple variables with a Markov-type coregionalization model. Math Geol 26(565):565–588. https://doi.org/10.1007/BF02089242

    Article  Google Scholar 

  • Armstrong M (1992) Positive definiteness is not enough. Math Geol 24(1):135–143

    Article  Google Scholar 

  • Astrakova A, Oliver DS (2014) Conditioning truncated pluri-Gaussian models to facies observations in ensemble-Kalman-based data assimilation. Math Geosci 47(3):345–367

    Article  Google Scholar 

  • Bianchi M, Zheng C, Wilson C, Tick GR, Liu G, Gorelick SM (2011) Spatial connectivity in a highly heterogeneous aquifer: from cores to preferential flow paths. Water Resour Res 47:W05524. https://doi.org/10.1029/2009WR008966

    Article  Google Scholar 

  • Bianchi M, Kearsey T, Kingdon A (2015) Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes. J Hydrol 531:557–573. https://doi.org/10.1016/j.jhydrol.2015.10.072

    Article  Google Scholar 

  • Bierkens MFP (1996) Modeling hydraulic conductivity of a complex confining layer at various spatial scales. Water Resour Res 32:2369–2382

    Article  Google Scholar 

  • Bierkens MFP, Burrough PA (1993) The indicator approach to categorical soil data: I theory. J Soil Sci 44:361–368

    Article  Google Scholar 

  • Blatt M, Wiseman S, Domany E (1996) Superparamagnetic clustering of data. Phys Rev Lett 76(18):3251–3254

    Article  CAS  Google Scholar 

  • Blessent D, Therrien R, Lemieux J-M (2011) Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach. Water Resour Res 47:W12530. https://doi.org/10.1029/2011WR011037

    Article  Google Scholar 

  • Carle SF (1996) A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture. PhD Thesis, University of California, Davis

  • Carle SF (1997a) Integration of geologic interpretation into geostatistical simulation. In: Glahn VP (eds) IAMG’97 proceedings of the third annual conference of the international association for mathematical geology, International Center for Numerical Methods, Barcelona

  • Carle SF (1997b) Implementation schemes for avoiding artifact discontinuities in simulated annealing. Math Geol 29(2):231–244

    Article  Google Scholar 

  • Carle SF (1999) TPROGS: transition probability geostatistical software, version 2.1. Hydrologic Sciences Graduate Group, University of California, Davis

    Google Scholar 

  • Carle SF (2000) Use of a transition probability/Markov approach to improve geostatistical simulation of facies architecture, American association of petroleum geologists (AAPG). In: Hedberg symposium: applied reservoir characterization using geostatistics, The Woodlands, TX, 3–6 Dec 2000

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476

    Article  Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one- and multi-dimensional Markov chains. Math Geol 29(7):891–918

    Article  Google Scholar 

  • Carle SF, Labolle EM, Weissmann GS, Van Brocklin D, Fogg GE (1998) Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. In: Fraser GS, Davis JM (eds) Concepts in hydrogeology and environmental geology, vol 1. SEPM (Society for Sedimentary Geology) Special Publication, McLean, pp 147–170

    Google Scholar 

  • Carr DD, Horowitz A, Hrarbar SV, Ridge KF, Rooney R, Straw WT, Webb W, Potter PE (1966) Stratigraphic sections, bedding sequences and random processes. Science 154(3753):1162–1164. https://doi.org/10.1126/science.154.3753.1162

    Article  CAS  Google Scholar 

  • Christakos G (1984) On the problem of permissible covariance and variogram models. Water Resour Res 20(2):251–265

    Article  Google Scholar 

  • Christakos G (1990) A Bayesian/maximum entropy view to spatial, estimation problem. Math Geol 30:435–462

    Article  Google Scholar 

  • Christakos G (2005) Random field models in earth sciences. Dover Publications INC., Mineola, New York. ISBN 0-486-43872-4

    Google Scholar 

  • Christakos G (2017) Spatiotemporal random fields: theory and applications, 2nd edn. Elsevier Inc., Cambridge. ISBN 978-0-12-803012-7

    Google Scholar 

  • Christensen NK, Minsley BJ, Christensen S (2017) Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error. Water Resour Res 53(2):1019–1038. https://doi.org/10.1002/2016WR019141

    Article  Google Scholar 

  • Cirpka OA, Valocchi AJ (2016) Debates—stochastic subsurface hydrology from theory to practice: does stochastic subsurface hydrology help solving practical problems of contaminant hydrogeology? Water Resour Res 52:9218–9227. https://doi.org/10.1002/2016WR019087

    Article  Google Scholar 

  • Comunian A, Renard P, Straubhaar J, Bayer P (2011) Three-dimensional high resolution fluvio-glacial aquifer analog—part 2: geostatistical modeling. J Hydrol 405:10–23. https://doi.org/10.1016/j.jhydrol.2011.03.037

    Article  Google Scholar 

  • de Marsily G, Delay F, Gonҫalvès J, Renard Ph, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183. https://doi.org/10.1007/s10040-004-0432-3

    Article  Google Scholar 

  • Delhomme JP (1976) Application de la théorie des variables régionalisées dans les sciences de l’eau [Application of the theory of regionalized variables to water sciences]. Doctoral thesis, University Paris VI

  • Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 1(5):251–266

    Article  Google Scholar 

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–2801

    Article  Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20(2):299–311. https://doi.org/10.1007/s10040-011-0808-0

    Article  Google Scholar 

  • Deutsch CV, Cockerham PW (1994) Practical considerations in the application of simulated annealing to stochastic simulation. Math Geol 26(1):67–81

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB: geostatistical software library. Oxford University Press, New York, p 340

    Google Scholar 

  • Doveton JH (1971) An application of Markov chain analysis to the Ayrshire Coal Measures succession. Scott J Geol 7(1):11–27

    Article  Google Scholar 

  • Doveton JH (1994) Theory and applications of vertical variability measures from Markov chain analysis. In: Yarus JH, Chambers RL (eds) Stochastic modeling and geostatistics: computer applications in geology, vol 3. Am. Assoc. Petroleum Geologists, Tulsa

    Google Scholar 

  • Elfeki AMM (1996) Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transport. PhD Thesis, Delft University of Technology, Balkema Publisher, Amsterdam

  • Elfeki AMM (2008) Conditional Stochastic simulation of the geological configuration at El-Arish coastal area, Egypt. Meteorol Environ Arid Land Agric Sci 19(1):55–66

    Article  Google Scholar 

  • Elfeki AMM, Dekking FM (2001) A Markov chain model for subsurface characterization: theory and applications. Math Geol 33(5):569–589

    Article  Google Scholar 

  • Elfeki AMM, Dekking FM (2005) Modelling subsurface heterogeneity by coupled Markov chains: directional dependency, Walther’s law and entropy. Geotech Geol Eng 23:721–756. https://doi.org/10.1007/s10706-004-2899-z

    Article  Google Scholar 

  • Enayatollah RK (2013) Geostatistical three-dimensional modeling of the subsurface unconsolidated materials in the Göttingen area: the transitional-probability Markov chain versus traditional indicator methods for modeling the geotechnical categories in a test site. PhD Thesis, Applied Geology Department, Faculty of Geosciences and Geography, Georg-August-University School of Science (GAUSS), Göttingen

  • Engdahl NB (2009) Heterogeneity effects on flow and transport within a shallow fluvial aquifer. MSc Thesis, Earth and Planetary Science (Hydrogeology), The University of New Mexico

  • Engdahl NB, Weissmann GS (2010) Anisotropic transport rates in heterogeneous porous media. Water Resour Res 46:W02507. https://doi.org/10.1029/2009WR007910

    Article  Google Scholar 

  • Engdahl NB, Vogler ET, Weissmann GS (2010) Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework. Water Resour Res 46:W01506. https://doi.org/10.1029/2009WR007903

    Article  Google Scholar 

  • Erdal D, Cirpka OA (2017) Preconditioning an ensemble Kalman filter for groundwater flow using environmental-tracer observations. J Hydrol 545:42–54. https://doi.org/10.1016/j.jhydrol.2016.11.064

    Article  Google Scholar 

  • Espinet A, Shoemaker C, Doughty C (2013) Estimation of Plume distribution for carbon sequestration using parameter estimation with limited monitoring data. Water Resour Res 49:4442–4464. https://doi.org/10.1002/wrcr.20326

    Article  CAS  Google Scholar 

  • Ethier VG (1975) Application of Markov analysis to the Banff formation (Mississippian), Alberta. Math Geol 7(1):47–61

    Article  Google Scholar 

  • Fleckenstein JH, Fogg GE (2008) Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeol J 16:1239–1250. https://doi.org/10.1007/s10040-008-0312-3

    Article  Google Scholar 

  • Fleckenstein H, Niswonger RG, Fogg GE (2006) River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44(6):837–852. https://doi.org/10.1111/j.1745-6584.2006.00190.x

    Article  CAS  Google Scholar 

  • Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6:131–143

    Article  Google Scholar 

  • Fogg GE, Carle SF, Green C (2000) Connected-network paradigm for the alluvial aquifer system. In: Zhang D, Winter CL (eds) Theory, modelling and field investigation in hydrogeology: a special volume in honor of Shlomo P. Neuman’s 60th birthday. Special paper 348. Boulder, Colorado, pp 25–42

    Chapter  Google Scholar 

  • Freeze RA (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media. Water Resour Res 11(5):725–741

    Article  Google Scholar 

  • Frei S, Fleckenstein JH, Kollet SJ, Maxwell RM (2009) Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375:383–393. https://doi.org/10.1016/j.jhydrol.2009.06.038

    Article  Google Scholar 

  • Galli A, Beucher H, Le Loch G, Doligez B, Group H (1994) The pros and cons of the truncated Gaussian method. In: Armstrong M, Dowd PA (eds) Geostatistical simulations, vol 7. Quantitative geology and geostatistics. Springer, Dordrecht

    Google Scholar 

  • Gelhar LW (1976) Effects of hydraulic conductivity variation on groundwater flow. In: Second international symposium on stochastic hydraulics, International Association for Hydraulic Research, Lund

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan

    Google Scholar 

  • Gingerich PD (1969) Markov analysis of cyclic alluvial sediments. J Sediment Pet 39(1):330–332

    Article  Google Scholar 

  • Ginn TR (2004) On the application of stochastic approaches in hydrogeology. Stoch Environ Res Risk Assess 18:282–284. https://doi.org/10.1007/s00477-004-0199-z

    Article  Google Scholar 

  • Gomez-Hernandez JJ, Journel AG (1992) Joint sequential simulation of multigaussian fields. In: Soares A (ed) Geostatistics Troia 1992. Kluwer Academic Publ, Dordrecht, pp 85–94

    Google Scholar 

  • Goovaerts P (1996) Stochastic simulation of categorical variables using a classification algorithm and simulated annealing. Math Geol 28:909–921

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Green CT, Böhlke JK, Bekins BA, Phillips SP (2010) Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour Res 46:W08525. https://doi.org/10.1029/2009WR008903

    Article  Google Scholar 

  • Green CT, Zhang Y, Jurgens BC, Starn JJ, Landon MK (2014) Accuracy of travel time distribution (TTD) models as affected by TTD complexity, observation errors, and model and tracer selection. Water Resour Res 50:6191–6213. https://doi.org/10.1002/2014WR015625

    Article  Google Scholar 

  • Hansen AL, Gunderman D, Heb X, Refsgaard JC (2014) Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations. J Hydrol 519:225–237. https://doi.org/10.1016/j.jhydrol.2014.07.013

    Article  CAS  Google Scholar 

  • Harp DR (2009) Hydrogeological engineering approaches to investigate and characterize heterogeneous aquifers. PhD Thesis, The University of New Mexico

  • He X, Sonnenborg TO, Jørgensen F, Høyer A-S, Møller RR, Jensen KH (2013) Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrol Earth Syst Sci 17:3245–3260. https://doi.org/10.5194/hess-17-3245-2013

    Article  Google Scholar 

  • He X, Koch J, Sonnenborg TO, Jørgensen F, Schamper C, Refsgaard JC (2014) Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50(4):3147–3169. https://doi.org/10.1002/2013WR014593

    Article  Google Scholar 

  • Høyer A-S, Jørgensen F, Foged N, He X, Christiansen AV (2015) Three-dimensional geological modelling of AEM resistivity data—a comparison of three methods. J Appl Geophys 115:65–78. https://doi.org/10.1016/j.jappgeo.2015.02.005

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2011) Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Math Geosci 43(5):521–536. https://doi.org/10.1007/s11004-011-9336-7

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2012) Modeling the effect of clay drapes on pumping test response in a cross-bedded aquifer using multiple-point geostatistics. J Hydrol 450–451:159–167. https://doi.org/10.1016/j.jhydrol.2012.05.014

    Article  Google Scholar 

  • Isaaks E (1990) The application of Monte Carlo methods to the analysis of spatial correlated data. PhD thesis, Stanford University, CA

  • Johnson NM (1995) Characterization of alluvial hydrostratigraphy with indicator semivariograms. Water Resour Res 31:3205–3216

    Article  Google Scholar 

  • Johnson NM, Dreiss SJ (1989) Hydrostratigraphic interpretation using indicator geostatistics. Water Resour Res 25:2501–2510

    Article  Google Scholar 

  • Jones NL, Walker JR, Carle SF (2002) Using transition probability geostatistics with MODFLOW, calibration and reliability in groundwater modelling: a few steps closer to reality. In: Proceedings of ModclCARH’2002, Prague, 17–20 June 2002. IAHS Publ. no. 277

  • Jones NL, Walker JR, Carle SF (2005) Hydrogeologic unit flow characterization using transition probability geostatistics. Groundwater 43(2):285–289

    Article  CAS  Google Scholar 

  • Journel A (1989) Fundamentals of geostatistics in five lessons, vol 8. Short course in geology. American Geophysical Union Press, Washington, p 40

    Book  Google Scholar 

  • Journel AG, Posa D (1990) Characteristic behavior and order relations for indicator variograms. Math Geol 22(8):1011–1025

    Article  Google Scholar 

  • Koch J (2013) Geological Heterogeneity in the norsminde catchment. MSc Thesis, University of Copenhagen

  • Koch J, He X, Jensen KH, Refsgaard JC (2014) Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a comprehensive soft data set. Hydrol Earth Syst Sci 18:2907–2923. https://doi.org/10.5194/hess-18-2907-2014

    Article  Google Scholar 

  • Kokosi AG (2016) Modeling the spatial distribution of hydraulic conductivity in Glafkos coastal aquifer using Markov chains for categorical variables. MSc Thesis, Department of Civil Engineering, University of Patras (in Greek)

  • Krumbein WC (1968) FORTRAN IV computer program for simulation of transgression and regression with continuous-time Markov models, vol 26. Computer Contr. Kansas Geological Survey, Lawrence

    Google Scholar 

  • Krumbein WC, Dacey MF (1969) Markov chains and embedded Markov chains in geology. Math Geol 1(1):79–96

    Article  Google Scholar 

  • Le Coz M, Bodin J, Renard P (2017) On the use of multiple-point statistics to improve groundwater flow modeling in karst aquifers: a case study from the Hydrogeological Experimental Site of Poitiers, France. J Hydrol 545:109–119. https://doi.org/10.1016/j.jhydrol.2016.12.010

    Article  Google Scholar 

  • Le Loch G, Galli A (1997) Truncated plurigaussian method: theoretical and practical points of view. Geostat Wollongong 96(1):211–222

    Google Scholar 

  • Le Loch G, Beucher H, Galli A, Doligez B (1994) Improvement in the truncated Gaussian method: combining several Gaussian functions. In: 4th European conference on the mathematics of oil recovery, Roros, p 13

  • Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30:1914–1932. https://doi.org/10.1016/j.advwatres.2007.03.005

    Article  Google Scholar 

  • Leeder MR (1982) Sedimentology. George Allen & Unwin Ltd, London, p 344

    Google Scholar 

  • Li W (2007a) Markov chain random fields for estimation of categorical variables. Math Geol 39(3):321–335. https://doi.org/10.1007/s11004-007-9081-0

    Article  Google Scholar 

  • Li W (2007b) A fixed-path Markov chain algorithm for conditional simulation of discrete spatial variables. Math Geol 39(2):159–176. https://doi.org/10.1007/s11004-006-9071-7

    Article  Google Scholar 

  • Li W, Zhang C (2006) A generalized Markov chain approach for conditional simulation of categorical variables from grid samples. Trans GIS 10(4):651–669

    Article  Google Scholar 

  • Li W, Li B, Shi Y, Tang D (1997) Application of the Markov-chain theory to describe spatial distribution of textural layers. Soil Sci 162(9):672–683

    Article  CAS  Google Scholar 

  • Li W, Li B, Shi Y (1999) Markov-chain simulation of soil textural profiles. Geoderma 92(1):37–53

    Article  Google Scholar 

  • Li W, Zhang C, Burt JE, Zhu AX, Feyen J (2004) Two-dimensional Markov chain simulation of soil type spatial distribution. Soil Sci Soc Am J 68(5):1479–1490

    Article  CAS  Google Scholar 

  • Li W, Zhang C, Dey DK, Willig MR (2013) Updating categorical soil maps using limited survey data by bayesian Markov chain cosimulation. Sci World J 2013:13. https://doi.org/10.1155/2013/587284

    Article  Google Scholar 

  • Liu N, Oliver DS (2005) Ensemble Kalman filter for automatic history matching of geologic facies. J Pet Sci Eng 47(3–4):147–161

    Article  CAS  Google Scholar 

  • Lu D, Ye M, Curtis GP (2015) Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models. J Hydrol 529:1859–1873. https://doi.org/10.1016/j.jhydrol.2015.07.029

    Article  CAS  Google Scholar 

  • Luster GR (1985) Raw material for portland cement: application of conditional simulation of coregionalization. PhD thesis, Stanford University

  • Maghrebi M, Jankovic I, Weissmann GS, Matott LS, Allen-King RM, Rabideau AJ (2015) Contaminant tailing in highly heterogeneous porous formations: sensitivity on model selection and material properties. J Hydrol 531:149–160. https://doi.org/10.1016/j.jhydrol.2015.07.015

    Article  Google Scholar 

  • Mariethoz G, Renard P, Cornaton F, Jaquet O (2009) Truncated plurigaussian simulations to characterize aquifer heterogeneity. Groundwater 47(1):13–24. https://doi.org/10.1111/j.1745-6584.2008.00489.x

    Article  CAS  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation [Regionalized variables and their estimation]. Masson, Paris, p 185

    Google Scholar 

  • Matheron G (1976) A simple substitute for conditional expectation: the disjunctive kriging. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. Reidel, Dordrecht, pp 221–236

    Chapter  Google Scholar 

  • Maxwell RM, Carle SF, Tompson AFB (2008) Contamination, risk, and heterogeneity: on the effectiveness of aquifer remediation. Environ Geol 54:1771–1786. https://doi.org/10.1007/s00254-007-0955-8

    Article  Google Scholar 

  • McMahon PB, Burow KR, Kauffman LJ, Eberts SM, Böhlke JK, Gurdak JJ (2008) Simulated response of water quality in public supply wells to land use change. Water Resour Res 44:W00A06. https://doi.org/10.1029/2007wr006731

    Article  Google Scholar 

  • Miall AD (1973) Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology 20(3):347–364

    Article  Google Scholar 

  • Middleton GV (1973) Johannes Walther’s law of the correlation of facies. Geol Soc Am Bull 84:979–988

    Article  Google Scholar 

  • Myers DE (1982) Matrix formulation of co-kriging. Math Geol 14(3):249–257

    Article  Google Scholar 

  • Myers DE (1989) Vector conditional simulation. In: Armstrong M (ed) Geostatistics. D. Reidel Publ, Dordrecht, pp 283–293

    Chapter  Google Scholar 

  • Park Y-J, Sudicky EA, McLaren RG, Sykes JF (2004) Analysis of hydraulic and tracer response tests within moderately fractured rock based on a transition probability geostatistical approach. Water Resour Res 40:W12404. https://doi.org/10.1029/2004WR003188

    Article  CAS  Google Scholar 

  • Park E, Elfeki AMM, Song Y, Kim K (2007) Generalized coupled Markov chain model for characterizing categorical variables in soil mapping. Soil Sci Soc Am J (SSSAJ) 71(3):909–917

    Article  CAS  Google Scholar 

  • Parks KP, Bentley LR, Crowe AS (2000) Capturing geological realism in stochastic simulations of rock systems with Markov statistics and simulated annealing. J Sediment Res 70(4):803–813

    Article  Google Scholar 

  • Poeter EP, McKenna SA (1995) Reducing uncertainty associated with ground-water flow and transport predictions. Ground Water 33:899–904

    Article  CAS  Google Scholar 

  • Politis DN (1994) Markov chains in many dimensions. Adv Appl Prob 26:756–774

    Article  Google Scholar 

  • Ritzi RW, Jayne DF, Zahradnik AJ, Field AA, Fogg GE (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. Ground Water 32:666–674

    Article  Google Scholar 

  • Ritzi RW Jr, Dominic DF, Brown NR, Kausch KW, McAlenney PJ, Basial MJ (1995) Hydrofacies distribution and correlation in the Miami Valley aquifer system. Water Resour Res 31(12):3271–3281. https://doi.org/10.1029/95WR02564

    Article  CAS  Google Scholar 

  • Ritzi RW, Dominic DF, Slesers AJ, Greer CB, Reboulet EC, Telford JA, Masters RW, Klohe CA, Bogle JL, Means BP (2000) Comparing statistical models of physical heterogeneity in buried-valley aquifers. Water Resour Res 36(11):3179–3192

    Article  Google Scholar 

  • Ronayne MJ, Gorelick SM, Caers J (2008) Identifying discrete geologic structures that produce anomalous hydraulic response: an inverse modeling approach. Water Resour Res 44(8). https://doi.org/10.1029/2007WR006635

  • Ross S (1993) Introduction to probability models, 5th edn. Academic, San Diego

    Google Scholar 

  • Schwarzacher W (1969) The use of Markov chains in the study of sedimentary cycles. Math Geol 12(3):213–234

    Article  Google Scholar 

  • Sebacher B, Hanea R, Heemink A (2013) A probabilistic parametrization for geological uncertainty estimation using the ensemble Kalman filter (EnKF). Comput Geosci 17(5):813–832

    Article  Google Scholar 

  • Sebacher B, Hanea R, Stordal AS (2017) An adaptive pluri-Gaussian simulation model for geological uncertainty quantification. J Pet Sci Eng 158:494–508. https://doi.org/10.1016/j.petrol.2017.08.038

    Article  CAS  Google Scholar 

  • Smith L, Freeze RA (1979a) Stochastic analysis of steady state groundwater flow in a bounded domain: 1. One-dimensional simulations. Water Resour Res 15(3):521–528

    Article  Google Scholar 

  • Smith L, Freeze RA (1979b) Stochastic analysis of steady state groundwater flow in a bounded domain: 2. Two-dimensional simulations. Water Resour Res 15(6):1543–1559

    Article  Google Scholar 

  • Solow AR (1986) Mapping by simple indicator kriging. Math Geol 18(3):335–352

    Article  Google Scholar 

  • Stevick E, Pohll G, Huntington J (2005) Locating new production wells using a probabilistic-based groundwater model. J Hydrol 303:231–246. https://doi.org/10.1016/j.jhydrol.2004.07.016

    Article  Google Scholar 

  • Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328. https://doi.org/10.1007/s11004-011-9328-7

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21. https://doi.org/10.1023/A:1014009426274

    Article  Google Scholar 

  • Sun AY, Ritzi RW, Sims DW (2008) Characterization and modeling of spatial variability in a complex alluvial aquifer: implications on solute transport. Water Resour Res 44:W04402. https://doi.org/10.1029/2007WR006119

    Article  Google Scholar 

  • Suro-Perez V, Journel A (1991) Indicator principal component kriging. Math Geol 23(5):759–788

    Article  Google Scholar 

  • Switzer P (1965) A random set process in the plane with a Markovian property. Ann Math Stat 36(6):1859–1863

    Article  Google Scholar 

  • Walker JR (2002) Application of transition probability geostatistics for indicator simulations involving the MODFLOW model. MSc Thesis, Department of Civil Engineering, Brigham Young University

  • Walther J (1894) Einleitung in die geologie als historische wissenschaft, vol 3. Lithogenesis der gegenwart. Fischer, Jena, pp 535–1055

    Google Scholar 

  • Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65

    Article  Google Scholar 

  • Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Article  Google Scholar 

  • Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):16-1–16-8

    Article  Google Scholar 

  • Weissmann GS, Zhang Y, Fogg GE, Mount JF (2004) Influence of incised-valley-fill deposits on hydrogeology of a stream dominated alluvial fan. In: Bridge JS, Hyndman DW (eds) Aquifer characterization, vol 80. SEPM (Society of Sedimentary Geology) Special Publication, McLean, pp 15–28. ISBN 1-56576-107-3

    Chapter  Google Scholar 

  • Wingle WL, Poeter EP (1993) Uncertainty associated with semivariograms used for site simulation. Ground Water 31:725–734

    Article  Google Scholar 

  • Wiseman S, Blatt M, Domany E (1998) Superparamagnetic clustering of data. Phys Rev E 57(4):3767–3783

    Article  CAS  Google Scholar 

  • Zhang J, Goodchild M (2002) Uncertainty in geographical information. Taylor and Francis, New York

    Google Scholar 

  • Zhang H, Harter T, Sivakumar B (2006) Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields. Water Resour Res 42:W06403. https://doi.org/10.1029/2004WR003808

    Article  Google Scholar 

  • Zhang Y, Green CT, Baeumer B (2014) Linking aquifer spatial properties and non-Fickian transport in mobile–immobile like alluvial settings. J Hydrol 512:315–331. https://doi.org/10.1016/j.jhydrol.2014.02.064

    Article  Google Scholar 

  • Zhu L, Gong H, Chen Y, Li X, Chang X, Cui Y (2016a) Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data. Sci Rep 6:22224. https://doi.org/10.1038/srep22224

    Article  CAS  Google Scholar 

  • Zhu L, Dai Z, Gong H, Gable C, Teatini P (2016b) Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans. Stoch Environ Res Risk Assess 30:1005–1016. https://doi.org/10.1007/s00477-015-1089-2

    Article  Google Scholar 

  • Žukovič M, Hristopulos DT (2013) Classification of missing values in spatial data using spin models. arXiv:1301.1464v1 [physics.data-an]

Download references

Acknowledgements

This work has been sponsored by the Onassis Foundation under the “Special Grant and Support Program for Scholars’ Association Members” (Grant No. R ZL 004-1/2015-2016). The Authors would like to acknowledge the useful comments and suggestions of two anonymous reviewers, which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langousis.

Appendix 1: Spatially averaged statistical measure to assess the performance of conditional simulations of categorical random fields

Appendix 1: Spatially averaged statistical measure to assess the performance of conditional simulations of categorical random fields

Suppose a study region D formed by two mutually exclusive and collectively exhaustive geologic categories/states: A and Ac (i.e. the complement of A). Note that for the case of m > 2 mutually exclusive and collectively exhaustive geologic states in D, A is set to a certain category, and Ac to the union of all states other than A. Define now Aact(x) to be the event that material/state A actually occurs at location xD, and Asim(x) to be the event that state A is simulated at xD. Since events Aact(x) and A\(_{\text{act}}^{\text{c}}\)(x), as well as Asim(x) and A\(_{\text{sim}}^{\text{c}}\)(x) are mutually exclusive and collectively exhaustive, one can calculate the total probability of error, p error (x), at any location xD of the conditionally simulated field as:

$$\begin{aligned} p_{error} \left( {\mathbf{x}} \right) \, & = P[\{ {\text{A}}_{\text{sim}}^{\text{c}} \left( {\mathbf{x}} \right) \cap {\text{A}}_{\text{act}} \left( {\mathbf{x}} \right)\} \cup \{ {\text{ A}}_{\text{sim}} \left( {\mathbf{x}} \right) \cap {\text{A}}_{\text{act}}^{\text{c}} \left( {\mathbf{x}} \right)\} ] \\ & = P[{\text{A}}_{\text{sim}}^{\text{c}} \left( {\mathbf{x}} \right) \cap {\text{A}}_{\text{act}} \left( {\mathbf{x}} \right)\left] { + P} \right[{\text{A}}_{\text{sim}} \left( {\mathbf{x}} \right) \cap {\text{A}}_{\text{act}}^{\text{c}} \left( {\mathbf{x}} \right)] \\ & = P[{\text{A}}_{\text{sim}}^{\text{c}} \left( {\mathbf{x}} \right)\left| {{\text{ A}}_{\text{act}} \left( {\mathbf{x}} \right)\left] P \right[{\text{A}}_{\text{act}} \left( {\mathbf{x}} \right)\left] { \, + P} \right[{\text{A}}_{\text{sim}} \left( {\mathbf{x}} \right)} \right|{\text{ A}}_{\text{act}}^{\text{c}} \left( {\mathbf{x}} \right)\left] { P} \right[{\text{A}}_{\text{act}}^{\text{c}} \left( {\mathbf{x}} \right)] \\ \end{aligned}$$
(A.1)

Note now that since either state Aact(x) and A\(_{\text{act}}^{\text{c}}\)(x) occur with probability 1 at any location xD, Eq. (A.1) can also be written in the form:

$$p_{error} \left( {\mathbf{x}} \right) \, = \left\{ {\begin{array}{ll} { 1 { - }q ({\mathbf{x}} ),\quad {\text{if A}}_{\text{act}} {\text{ occurs at }}{\mathbf{x}} \in {\mathbf{D}},} \hfill \\ { \, q ({\mathbf{x}} ) { },\quad {\text{if A}}_{\text{act}}^{\text{c}} {\text{ occurs at }}{\mathbf{x}} \in {\mathbf{D}},} \hfill \\ \end{array} } \right.$$
(A.2)

where q(x) : = P[Asim(x)] corresponds to the probability that material A is simulated at location x, and can be directly estimated from an ensemble of numerical simulations conditioned on borehole data.

One can now use equation (A.2) to assess the performance of the conditionally simulated fields, by defining the average measure:

$$M = \, 1 - \, 2\bar{p}_{error}$$
(A.3)

where the over-bar denotes spatial averaging of the measure in Eq. (A.2) over the whole study domain D, and 2 is a normalization factor so that measure M varies in the range [0, 1]; i.e. in the case when simulations are independent from the data that are conditioned on, \(\bar{p}\) error  = 1/2 and M = 0. Clearly, for values of M close to 1, the ensemble of conditional simulations closely approximates the actual geology of the region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langousis, A., Kaleris, V., Kokosi, A. et al. Markov based transition probability geostatistics in groundwater applications: assumptions and limitations. Stoch Environ Res Risk Assess 32, 2129–2146 (2018). https://doi.org/10.1007/s00477-017-1504-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1504-y

Keywords

Navigation