Skip to main content
Log in

Regularized Bayesian estimation for GEV-B-splines model

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Large observed datasets are not stationary and/or depend on covariates, especially, in the case of extreme hydrometeorological variables. This causes the difficulty in estimation, using classical hydrological frequency analysis. A number of non-stationary models have been developed using linear or quadratic polynomial functions or B-splines functions to estimate the relationship between parameters and covariates. In this article, we propose regularised generalized extreme value model with B-splines (GEV-B-splines models) in a Bayesian framework to estimate quantiles. Regularisation is based on penalty and aims to favour parsimonious model especially in the case of large dimension space. Penalties are introduced in a Bayesian framework and the corresponding priors are detailed. Five penalties are considered and the corresponding priors are developed for comparison purpose as: Least absolute shrinkage and selection (Lasso and Ridge) and smoothing clipped absolute deviations (SCAD) methods (SCAD1, SCAD2 and SCAD3). Markov chain Monte Carlo (MCMC) algorithms have been developed for each model to estimate quantiles and their posterior distributions. Those approaches are tested and illustrated using simulated data with different sample sizes. A first simulation was made on polynomial B-splines functions in order to choose the most efficient model in terms of relative mean biais (RMB) and the relative mean-error (RME) criteria. A second simulation was performed with the SCAD1 penalty for sinusoidal dependence to illustrate the flexibility of the proposed approach. Results show clearly that the regularized approaches leads to a significant reduction of the bias and the mean square error, especially for small sample sizes (n < 100). A case study has been considered to model annual peak flows at Fort-Kent catchment with the total annual precipitations as covariates. The conditional quantile curves were given for the regularized and the maximum likelihood methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AghaKouchak A, Nasrollahi N (2010) Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resour Manag 24(6):1229–1249

    Article  Google Scholar 

  • Boisvert J, Ashkar F, El Adlouni S, El-Jabi N, Aucoin F (2015) Modeling St. John River (N.B., Canada) incomplete hydrometric data using bivariate distributions. Revue canadienne de génie civil 42(7):427–436

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New-York

    Book  Google Scholar 

  • Carreau J, Bouvier C (2015) Multivariate density model comparison for multi-site flood-risk rainfall in the French Mediterranean area. Stoch Environ Res Risk Assess 1:1–22

    Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. J Roy Stat Soc 54(1):207–222

    Article  Google Scholar 

  • Craven P, Wahba G (1978) Smoothing noisy data with splines functions. Numer Math 31(4):377–403

    Article  Google Scholar 

  • Das D, Ganguly AR, Chatterjee S, Kumar V, Obradovic Z (2012) Spatially penalized regression for extremes dependence analysis and prediction: case of precipitation extremes

  • Dupuis DJ (2012) Modeling waves of extreme temperature: the changing tails of four cities. J Am Stat Assoc 107(497):24–39

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ (2008) Comparison of methods for estimating the parameters of the non-stationary GEV model. Rev Sci Eau 21(1):35–50

    Google Scholar 

  • El Adlouni S, Favre A-C, Bobée B (2006) Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods. Comput Stat Data Anal 50(10):2685–2701

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:W03410. doi:10.1029/2005WR004545

    Article  Google Scholar 

  • Fahrmeir L, Kneib T, Konrath S (2010) Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Stat Comput 20(2):203–219

    Article  Google Scholar 

  • Fan J (1997) Comments on wavelets in statistics: a review by a. antoniadis. J Ital Stat Soc 6(2):131–138

    Article  Google Scholar 

  • Fan J, Li R (2001) Variable selection via non-concave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  Google Scholar 

  • Fan J, Feng Y, Wu Y (2009) Network exploration via the adaptive Lasso and SCAD penalties. Ann Appl Stat 3(2):521–541

    Article  Google Scholar 

  • Griffin J, Brown P (2005) Alternative prior distributions for variable selection with very many more variables than observations. Technical Report. University of Warwick, Coventry

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J Roy Meteorol Soc 81(348):158–171

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • Nasri B, El Adlouni S, Ouarda TB (2013) Bayesian estimation for GEV-B-splines model. Open J Stat 3(02):118–129

    Article  Google Scholar 

  • Ouarda TBMJ, El Adlouni S (2011) Bayesian non-stationary frequency analysis of hydrological variables1. JAWRA 47(3):496–505

    Google Scholar 

  • Padoan SA, Wand MP (2008) Mixed model-based additive models for sample extremes. Stat Probab Lett 78(17):2850–2858

    Article  Google Scholar 

  • Park C (2010) Block thresholding wavelet regression using SCAD penalty. J Stat Plann Inference 140(9):2755–2770

    Article  Google Scholar 

  • Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Schmidt M. (2005). Least squares optimization with L1-norm regularization. CS542B Project Report

  • Serinaldi F (2015) Dismissing return periods! Stoch Environ Res Risk Assess 29:1179–1189. doi:10.1007/s00477-014-0916-1

    Article  Google Scholar 

  • Shinyie WL, Ismail N, Jemain AA (2013) Semi-parametric estimation for selecting optimal threshold of extreme rainfall events. Water Resour Manag 27(7):2325–2352

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288

    Google Scholar 

  • Vanem E (2011) Long-term time-dependent stochastic modelling of extreme waves. Stoch Environ Res Risk Assess 25(2):185–209

    Article  Google Scholar 

  • Vasiliades L, Galiatsatou P, Loukas A (2015) Nonstationary frequency analysis of annual maximum rainfall using climate covariates. Water Resour Manag 29(2):339–358

    Article  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54(4):437–447

    Article  Google Scholar 

  • Zou H, Li R (2008) One-step sparse estimates in non-concave penalized likelihood models. Ann Stat 36(4):1509

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to the associate Editor and two anonymous reviewers for their comments and to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support. We also thank the Environment Canada Data Access Integration (DAI) portal for providing data from observed daily precipitation amounts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaheddine El Adlouni.

Appendices

Appendix 1: Bayesian Lasso GEV B-splines

The expression of Lasso penalty is:

$$p_{l} \left( \beta \right) = {\mathop \sum \limits_{j = 1}^{m + l + 1}} |\beta_{j} |\;{\text{With}}\;{\text{L}}_{1}\!-\!{\text{norm}}$$
(23)

1.1 Proposed model (GEV-Lasso)

$$\pi (\beta ) \propto \pi \left( {\beta_{j} |\tau^{2} } \right)*\pi \left( {\tau^{2} |\lambda } \right)*\pi \left( {\lambda^{2} } \right)$$
(24)
$$f\left( {\theta |y} \right) \propto \frac{1}{\sigma }\left\{ {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right\}^{{ - \frac{1}{\kappa } - 1}} *{ \exp }\left( { - \left( {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right)^{{ - \frac{1}{\kappa }}} } \right)$$
(25)
$$*\mathop \prod \limits_{j = 1}^{d} \exp \left( {\frac{{ - \beta_{j}^{2} }}{{2\tau^{2} }}} \right)*\exp \left( {\frac{{\lambda^{2} }}{2}} \right)*\left( {\frac{{h^{2} }}{{{{\Gamma }}\left( \lambda \right)}}\lambda^{2z - 2} \exp \left( { - h\lambda^{2} } \right)} \right)*\frac{1}{\sigma }*\left( {\left( {\frac{\kappa - a}{b - a}} \right)^{\alpha - 1} \left( {1 - \left( {\frac{\kappa - a}{b - a}} \right)} \right)^{\beta - 1} \frac{{{{\Gamma }}(u + v)}}{{{{\Gamma }}(u){{\Gamma }}(v)}}} \right)$$

Appendix 2: Ridge GEV-B-splines model

2.1 Penalty

$$P_{l} \left( \beta \right) = \mathop \sum \limits_{j = 1}^{m + l + 1} \beta_{j}^{2} = \lambda \mathop \sum \limits_{j = 1}^{m + l + 1} \beta_{j}^{2}$$
(26)

2.2 Proposed model (GEV-Ridge)

$$\pi (\beta ) \propto \mathop \prod \limits_{j = 1}^{d} exp\left( {\frac{{ - \beta^{2} }}{{2\tau^{2} }}} \right)*\frac{{2S^{\upsilon } }}{\upsilon - 2}*\tau^{ - (\upsilon + 2)} { \exp }\left( { - S^{2} \tau^{ - 2} } \right)$$
(27)
$$f\left( {\theta |y} \right) \propto \frac{1}{\sigma }\left\{ {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right\}^{{ - \frac{1}{\kappa } - 1}} *exp\left( { - \left( {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right)^{{ - \frac{1}{\kappa }}} } \right)$$
$$* \mathop \prod \limits_{j = 1}^{d} exp\left( {\frac{{ - \beta^{2} }}{{2\tau^{2} }}} \right)*\frac{{2S^{\upsilon } }}{\upsilon - 2}*\tau^{{ - \left( {\upsilon + 2} \right)}} { \exp }\left( { - S^{2} \tau^{ - 2} } \right)*\frac{1}{\sigma }* \left( {\left( {\frac{\kappa - a}{b - a}} \right)^{\alpha - 1} \begin{array}{*{20}l} { } \\ {\left( {1 - \left( {\frac{\kappa - a}{b - a}} \right)} \right)} \\ \end{array}^{\beta - 1} \frac{{{{\Gamma }}(u + v)}}{{{{\Gamma }}(u){{\Gamma }}(v)}}} \right)$$
(28)

Appendix 3: SCAD GEV-B-splines

3.1 SCAD1

3.1.1 Penalty

$$P_{\lambda } \left( {\left| \beta \right|} \right) = \lambda \left\{ {\begin{array}{lll} \!\!{\left| \beta \right|} & \quad{if\; \left| \beta \right|~ \le \lambda } \\ \!\!\!{- \frac{{\left( {\beta ^{2} - 2a~\lambda \left| \beta \right| + \lambda ^{2} } \right)}}{{2\left( {a - 1} \right)\lambda }}~} &\quad {\forall ~\lambda < \left| \beta \right| \le a\lambda } \\ \!\!{\frac{1}{2}~\left( {a + 1} \right)\lambda} \\ \end{array} } \right.$$
(29)

3.1.2 Proposed model (GEV-SCAD1)

$$f\left( {\theta |y} \right) \propto \frac{1}{\sigma }\left\{ {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right\}^{{ - \frac{1}{\kappa } - 1}} *exp\left( { - \left( {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right)^{{ - \frac{1}{\kappa }}} } \right)*\frac{1}{\sigma }*\left( {\left( {\frac{\kappa - a}{b - a}} \right)^{\alpha - 1} \left( {1 - \left( {\frac{\kappa - a}{b - a}} \right)} \right)^{\beta - 1} \frac{{{{\Gamma }}(u + v)}}{{{{\Gamma }}(u){{\Gamma }}(v)}}} \right)*\frac{1}{{(a\lambda )^{2} }}*\mathop \prod \limits_{j = 1}^{d} exp\left( {\frac{{ - \beta^{2} }}{{2(a\lambda )^{2} }}} \right)$$
(30)

3.2 SCAD2

3.2.1 Penalty

$$P_{\lambda } \left( \beta \right) \approx \mathop \sum \limits_{j = 1}^{d} P_{\lambda } \left( {\beta_{j} } \right) = P_{\lambda } \left( {|\beta_{j}^{0} |} \right) + \mathop \sum \limits_{j = 1}^{d} P_{\lambda }^{'} \left( {\beta_{j}^{{0^{2} }} } \right)\left( {\beta_{j}^{2} - \beta_{j}^{{(0)^{2} }} } \right)$$
(31)

3.2.2 Proposed model (GEV-SCAD2)

$$f\left( {\theta |y} \right) \propto \frac{1}{\sigma }\left\{ {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right\}^{{ - \frac{1}{\kappa } - 1}} *exp\left( { - \left( {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right)^{{ - \frac{1}{\kappa }}} } \right)*\frac{1}{\sigma }*\left( {\left( {\frac{\kappa - a}{b - a}} \right)^{\alpha - 1} \left( {1 - \left( {\frac{\kappa - a}{b - a}} \right)} \right)^{\beta - 1} \frac{{{{\Gamma }}(u + v)}}{{{{\Gamma }}(u){{\Gamma }}(v)}}} \right)*2P_{\lambda }^{'} \left( {\beta_{j}^{{0^{2} }} } \right)*\mathop \prod \limits_{j = 1}^{d} exp\left( { - \beta^{2} P_{\lambda }^{'} \left( {\beta_{j}^{{0^{2} }} } \right)} \right)$$
(32)

3.3 SCAD3

3.3.1 Penalty

$$P_{\lambda } \left( \beta \right) \approx \mathop \sum \limits_{j = 1}^{d} P_{\lambda } \left( {\beta_{j} } \right) = P_{\lambda } \left( {|\beta_{j}^{(0)} |} \right) + \mathop \sum \limits_{j = 1}^{d} P_{\lambda }^{'} \left( {\beta_{j}^{(0)} } \right)\left( {\beta_{j} - \beta_{j}^{(0)} } \right)$$
(33)

3.3.2 Proposed model (GEV-SCAD3)

$$f\left( {\theta |y} \right) \propto \frac{1}{\sigma }\left\{ {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right\}^{{ - \frac{1}{\kappa } - 1}} *exp\left( { - \left( {1 + \kappa \left( {\frac{{y - \mathop \sum \nolimits_{j} \left( {1 B} \right)*\left( {\begin{array}{*{20}l} {\beta_{0} } \\ \beta \\ \end{array} } \right)}}{\sigma }} \right)} \right)^{{ - \frac{1}{\kappa }}} } \right)*\frac{1}{\sigma }*\left( {\left( {\frac{\kappa - a}{b - a}} \right)^{\alpha - 1} \left( {1 - \left( {\frac{\kappa - a}{b - a}} \right)} \right)^{\beta - 1} \frac{{{{\Gamma }}(u + v)}}{{{{\Gamma }}(u){{\Gamma }}(v)}}} \right)*2P_{\lambda }^{'} \left( {\beta_{j}^{(0)} } \right)*\mathop \prod \limits_{j = 1}^{d} exp\left( { - \beta^{2} 2P_{\lambda }^{'} \left( {\beta_{j}^{(0)} } \right)} \right)$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, N., Adlouni, S.E. Regularized Bayesian estimation for GEV-B-splines model. Stoch Environ Res Risk Assess 31, 535–550 (2017). https://doi.org/10.1007/s00477-016-1295-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1295-6

Keywords

Navigation