Skip to main content

Advertisement

Log in

Spatial-depth functional estimation of ocean temperature from non-separable covariance models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatial-depth functional regression is applied for the estimation of ocean temperature, with projection onto the eigenvectors of the empirical covariance operator of the functional response (i.e., onto the Empirical Orthogonal Functions in space and depth). Moment-based estimation is performed to approximate the regression operators in the subspace generated by the empirical eigenvectors associated with nonnull eigenvalues. In addition, Bayesian estimation is performed to approximate the regression operators in the subspace generated by the empirical eigenvectors associated with almost null eigenvalues. The cross-validation results obtained, together with the spatial-depth residual correlation analysis carried out on a real data set for the South Atlantic area, to the east of Argentina and the Falkland Islands, represent an improvement on those provided by the wavelet-based approach recently proposed in Fernández-Pascual (Stoch Environ Res Risk Assess 30:523–557, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angelini C, De Canditiis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291

    Article  Google Scholar 

  • Baladandayuthapani V, Mallick B, Hong M, Lupton J, Turner N, Caroll R (2008) Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis. Biometrics 64:64–73

    Article  Google Scholar 

  • Basse M, Diop A, Dabo-Niang S (2008) Mean square properties of a class of kernel density estimates for spatial functional random variables. Annales De L’I.S.U.P. Publications de l’Institut de Statistique de l’Université de Paris, Paris

    Google Scholar 

  • Ben-Israel A (1966) A Newton–Raphson method for the solution of system of equations. J Math Anal Appl 15:243–252

    Article  Google Scholar 

  • Deuflhard P (1974) A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple smoothing. Numer Math 22:289–315

    Article  Google Scholar 

  • Fan J, Zhang JT (2000) Two-step estimation of functional linear models with applications to longitudinal data. J R Stat Soc Ser B 62:303–322

    Article  Google Scholar 

  • Fernández-Pascual R, Espejo RM, Ruiz-Medina MD (2016) Moment and bayesian wavelet regression from spatially correlated functional data. Stoch Environ Res Risk Assess 30:523–557

    Article  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2010) Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat 15:66–82

    Article  Google Scholar 

  • Gneiting T (2002) Non-separable, stationary covariance functions for spacetime data. J Am Stat Assoc 458:590–600

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Mattèrn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  CAS  Google Scholar 

  • Mardia KV, Goodall C (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. North Holland, Amsterdam, pp 347–386

    Google Scholar 

  • Mosammam AM (2015) The reverse dimple in potentially negative-value space–time covariance models. Stoch Environ Res Risk Assess 29:599–607

    Article  Google Scholar 

  • Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418

    Article  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space- time covariance functions. Stoch Environ Res Risk Assess 21:113–122

    Article  Google Scholar 

  • Porcu E, Zastavnyi V (2011) Characterization theorems for some classes of covariance functions associated to vector-valued random fields. J Multivar Anal 102:1293–1301

    Article  Google Scholar 

  • Ruiz-Medina MD (2011) Spatial autoregressive and moving average Hilbertian processes. J Multivar Anal 102:292–305

    Article  Google Scholar 

  • Ruiz-Medina MD (2012) Spatial functional prediction from spatial autoregressive Hilbertian processes. Environmetrics 23:119–128

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2013) Integration of spatial functional interaction in the extrapolation of ocean surface temperature anomalies due to global warming. Int J Appl Earth Obs Geoinf 22:27–39

    Article  Google Scholar 

  • Ruiz-Medina MD, Frías MP (2015) Wavelet-based semiparametric estimation of ocean surface temperature. Math Geosci 47:149–171

    Article  CAS  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Christakos J, Fernández-Pascual R (2016) New compactly supported spatiotemporal covariance functions from SPDEs. Stat Methods Appl 25:125–141

    Article  Google Scholar 

  • Sandwell DT (1987) Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys Res Lett 14:139–142

    Article  Google Scholar 

  • Sigrist F, Kunsch HR, Stahel WA (2015) Stochastic partial differential equation based modelling of large space–time data sets. J R Stat Soc Ser B-Stat Methodol 77:3–33

    Article  Google Scholar 

  • Yang WH, Wikle CK, Holan SH, Sudduth K, Meyers DB (2015) Bayesian analysis of spatially-dependent functional responses with spatially-dependent multi-dimensional functional predictors. Stat Sin 25:205–223

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by projects MTM2012-32674 (cofinanced with FEDER funds) and MTM2015–71839–P of the DGI, MINECO, Spain. We would like to thank the guest editors for their support for the research area of Spatial Functional Statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ruiz-Medina.

Appendix

Appendix

In this section we show the computations to be developed to obtain the Bayes estimators of the coefficients of the regression operators with respect to the eigenvectors associated with the smallest eigenvalues of the covariance operator of the response.

For each \(j=M+1, \ldots , H,\) the equation system (24) can be rewritten as

$$\begin{aligned} 0= & {} -\frac{1}{2\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\sum _{t=1}^{T} -2\varvec{\Psi }^{*}_{j}\mathbf {X}_{t}\left( \varvec{\Psi }^{*}_{j}\mathbf {Y}_{t}-\lambda _{j}(\mathcal {K}_{1}) \varvec{\Psi }^{*}_{j}\mathbf {X}_{t}-\lambda _{j}(\mathcal {K}_{2})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}-\lambda _{j}(\mathcal {K}_{3})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\right) \nonumber \\+ & {} \frac{a_{j1}-1}{\lambda _{j}(\mathcal {K}_{1})}-\frac{b_{j1}-1}{1-\lambda _{j}(\mathcal {K}_{1})} \nonumber \\ 0= & {} -\frac{1}{2\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\sum _{t=1}^{T} -2\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}\left( \varvec{\Psi }^{*}_{j}\mathbf {Y}_{t}-\lambda _{j}(\mathcal {K}_{1}) \varvec{\Psi }^{*}_{j}\mathbf {X}_{t}-\lambda _{j}(\mathcal {K}_{2})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}-\lambda _{j}(\mathcal {K}_{3})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\right) \nonumber \\+ & {} \frac{a_{j2}-1}{\lambda _{j}(\mathcal {K}_{2})}-\frac{b_{j2}-1}{1-\lambda _{j}(\mathcal {K}_{2})} \nonumber \\ 0= & {} -\frac{1}{2\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\sum _{t=1}^{T} -2\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\left( \varvec{\Psi }^{*}_{j}\mathbf {Y}_{t}-\lambda _{j}(\mathcal {K}_{1}) \varvec{\Psi }^{*}_{j}\mathbf {X}_{t}-\lambda _{j}(\mathcal {K}_{2})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}-\lambda _{j}(\mathcal {K}_{3})\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\right) \nonumber \\+ & {} \frac{a_{j3}-1}{\lambda _{j}(\mathcal {K}_{3})}-\frac{b_{j3}-1}{1-\lambda _{j}(\mathcal {K}_{3})}. \end{aligned}$$
(26)

Thus, for each \(j=M+1, \ldots , H,\) the Bayes estimator of the parameter vector \((\lambda _{j}(\mathcal {K}_{1}),\lambda _{j}(\mathcal {K}_{2}),\lambda _{j}(\mathcal {K}_{3})),\) the generalised maximum likelihood estimator given by the mode of the posterior, is obtained as the solution to the following system of non-linear equations:

$$\begin{aligned} 0= & \, \frac{\alpha _{T,1,2} }{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}-\frac{\lambda _{j}(\mathcal {K}_{1})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\beta _{T,2}- \frac{\lambda _{j}(\mathcal {K}_{2})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,2,3}-\frac{\lambda _{j}(\mathcal {K}_{3})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,2,4} +\frac{a_{j1}-1}{\lambda _{j}(\mathcal {K}_{1})}-\frac{b_{j1}-1}{1-\lambda _{j}(\mathcal {K}_{1})}\nonumber \\ 0= & \, \frac{\alpha _{T,1,3} }{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}-\frac{\lambda _{j}(\mathcal {K}_{2})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\beta _{T,3} -\frac{\lambda _{j}(\mathcal {K}_{1})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,2,3}-\frac{\lambda _{j}(\mathcal {K}_{3})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,3,4} +\frac{a_{j2}-1}{\lambda _{j}(\mathcal {K}_{2})}-\frac{b_{j2}-1}{1-\lambda _{j}(\mathcal {K}_{2})}\nonumber \\ 0= & \, \frac{\alpha _{T,1,4} }{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}-\frac{\lambda _{j}(\mathcal {K}_{3})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\beta _{T,4} -\frac{\lambda _{j}(\mathcal {K}_{1})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,2,4}-\frac{\lambda _{j}(\mathcal {K}_{2})}{\rho _{\widehat{\varphi }_{j},\widehat{\varphi }_{j}}}\alpha _{T,3,4} +\frac{a_{j3}-1}{\lambda _{j}(\mathcal {K}_{3})}-\frac{b_{j3}-1}{1-\lambda _{j}(\mathcal {K}_{3})}, \end{aligned}$$
(27)

where

$$\begin{aligned} \alpha _{T,1,2}= & {} \sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {X}_{t}\varvec{\Psi }^{*}_{j}\mathbf {Y}_{t}\quad \alpha _{T,2,3} =\sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}\varvec{\Psi }^{*}_{j}\mathbf {X}_{t}\quad \alpha _{T,2,4} =\sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\varvec{\Psi }^{*}_{j}\mathbf {X}_{t} \nonumber \\ \alpha _{T,1,3}= & {} \sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}\varvec{\Psi }^{*}_{j}\mathbf {Y}_{t}\quad \alpha _{T,3,4} =\sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}\quad \nonumber \\ \alpha _{T,1,4}= & {} \sum _{t=1}^{T}\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}\varvec{\Psi }^{*}_{j}\mathbf {Y}_{t} \nonumber \\ \beta _{T,2}= & {} \sum _{t=1}^{T} [\varvec{\Psi }^{*}_{j}\mathbf {X}_{t}]^{2}\quad \beta _{T,3}=\sum _{t=1}^{T} [\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{1}]^{2}\quad \beta _{T,4}=\sum _{t=1}^{T} [\varvec{\Psi }^{*}_{j}\mathbf {Z}_{t}^{2}]^{2}. \end{aligned}$$
(28)

The non-linear system of Eq. (27), in the parameters \(\lambda _{j}(\mathcal {K}_{1}),\) \(\lambda _{j}(\mathcal {K}_{2})\) and \(\lambda _{j}(\mathcal {K}_{3}),\) for each \(j=M+1, \ldots , H,\) can be solved by applying the Multivariate Newton–Raphson Method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espejo, R.M., Fernández-Pascual, R. & Ruiz-Medina, M.D. Spatial-depth functional estimation of ocean temperature from non-separable covariance models. Stoch Environ Res Risk Assess 31, 39–51 (2017). https://doi.org/10.1007/s00477-016-1259-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1259-x

Keywords

Navigation