Skip to main content
Log in

Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Solute transport in subsurface environments is controlled by geological heterogeneity over multiple scales. In reactive transport characterized by a low Damköhler number, it is also controlled by the rate of kinetic mass transfer. A theory for addressing the impact of sedimentary texture on the transport of kinetically sorbing solutes in heterogeneous porous formations is derived using the Lagrangian-based stochastic methodology. The resulting model represents the hierarchical organization of sedimentary textures and associated modes of log conductivity (K) for sedimentary units through a hierarchical Markov Chain. The model characterizes kinetic sorption using a spatially uniform linear reversible rate expression. Our main interest is to investigate the effect of sorption kinetics relative to the effects of K heterogeneity on the dispersion of a reactive plume. We study the contribution of each scale of stratal architecture to the dispersion of kinetically sorbing solutes in the case of a low Damköhler number. Examples are used to demonstrate the time evolution and relative contributions of the auto- and cross-transition probability terms to dispersion. Our analysis is focused on the model sensitivity to the parameters defined at each hierarchical level (scale) including the integral scales of K spatial correlation, the anisotropy ratio, the indicator correlation scales, and the contrast in mean K between facies defined at different scales. The results show that the anisotropy ratio and integral scales of K have negligible effect upon the longitudinal dispersion of sorbing solutes. Furthermore, dispersion of sorbing solutes depends mostly on indicator correlation scales, and the contrast of the mean conductivity between units at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen-King RM, Halket RM, Gaylord DR, Robin MJL (1998) Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resour Res 34:385–396. doi:10.1029/97wr03496

    Article  Google Scholar 

  • Allen-King RM, Divine DP, Robin MJL, Alldredge JR, Gaylord DR (2006) Spatial distributions of perchloroethylene reactive transport parameters in the Borden Aquifer. Water Resour Res 42:W01413. doi:10.1029/2005WR003977

    Google Scholar 

  • Attinger S, Dentz M, Kinzelbach H, Kinzelbach W (1999) Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium. J Fluid Mech 386:77–104

    Article  CAS  Google Scholar 

  • Attinger S, Dentz M, Kinzelbach W (2004) Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. Stoch Environ Res Risk Assess 18(1):9–15

    Article  Google Scholar 

  • Bellin A, Valocchi AJ, Rinaldo A (1991) Double peak formation in reactive solute transport in one-dimensional heterogeneous porous media. Quaderni del Dipatimento IDR 1/1991, Dipartimento di Ingegneria Civile et Ambientale, Universita degli Studdi Trento

  • Bellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18(1):31–38

    Article  Google Scholar 

  • Cvetkovic V, Dagan G (1994) Transport of kinetically sorbing solute by steady random velocity in heterogeneous porous formations. J Fluid Mech 265:189–215

    Article  CAS  Google Scholar 

  • Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities 2. The solute transport. Water Resour Res 18(4):0835–0848

    Article  Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Article  Google Scholar 

  • Dagan G (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour Res 24(9):1491–1500

    Article  CAS  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, Berlin

    Book  Google Scholar 

  • Dai Z, Ritzi RW Jr, Huang C, Rubin YN, Dominic DF (2004) Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. J Hydrol 294(1):68–86

    Article  Google Scholar 

  • Dai Z, Ritzi RW Jr, Dominic DF (2005) Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop analog studies. Water Resour Res 41:W07032. doi:10.1029/2004WR003515

    Google Scholar 

  • Dai Z, Wolfsberg A, Lu Z, Deng H (2009) Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophys Res Lett 36:L01403. doi:10.1029/2008GL036516

    Article  Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology. Academic Press, Orlando

    Google Scholar 

  • Deng H, Dai Z, Wolfsberg A, Lu Z, Ye M, Reimus P (2010) Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour Res 46:W06501. doi:10.1029/2009WR008363

    Google Scholar 

  • Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91(3):248–257

    Article  CAS  Google Scholar 

  • Fernàndez-Garcia D, Illangasekare TH, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41:W03012. doi: 10.1029/2004WR003125

  • Frind EO, Sudicky EA, Schellenberg SL (1987) Micro-scale modelling in the study of plume evolution in heterogeneous media. Stoch Hydrol Hydraul 1(4):263–279

    Article  Google Scholar 

  • Guin A, Ramanathan R, Ritzi RW Jr, Dominic DF, Lunt IA, Scheibe TD, Freedman VL (2010) Simulating the heterogeneity in braided channel belt deposits: 2. Examples of results and comparison to natural deposits. Water Resour Res 46:W04516. doi:10.1029/2009WR008112

    Google Scholar 

  • Keller R, Giddings J (1960) Multiple zones and spots in chromatography. J Chromatogr 3:205–220

    Article  CAS  Google Scholar 

  • Maghrebi M, Jankovic I, Fiori A, Dagan G (2013) Effective retardation factor for transport of reactive solutes in highly heterogeneous porous formations. Water Resour Res 49(12). doi: 10.1002/2013WR014429

  • Massabó M, Bellin A, Valocchi AJ (2008) Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution. Water Resour Res 44:W09424. doi:10.1029/2007WR006539

    Google Scholar 

  • Parker JC, Valocchi AJ (1986) Constraints on the validity of equilibrium and first-order kinetic transport models in structured soils. Water Resour Res 22(3):399–407

    Article  CAS  Google Scholar 

  • Quinodoz HAM (1992) Transport of kinetically adsorbing contaminants in randomly heterogeneous aquifers. Ph.D. thesis, University of Illinois at Urbana-Champaign

  • Quinodoz HAM, Valocchi AJ (1993) Stochastic analysis of the transport of kinetically adsorbing solutes in aquifers with randomly heterogeneous hydraulic conductivity. Water Resour Res 29(9):3227–3240

    Article  CAS  Google Scholar 

  • Rajaram H (1997) Time and scale dependent effective retardation factors in heterogeneous aquifers. Adv Water Resour 20(4):217–230

    Article  Google Scholar 

  • Ramanathan R, Ritzi RW Jr, Huang C (2008) Linking hierarchical stratal architecture to plume spreading in a Lagrangian-based transport model. Water Resour Res 44(4). doi:10.1029/2009WR007810

  • Ramanathan R, Ritzi RW Jr, Allen-King RM (2010) Linking hierarchical stratal architecture to plume spreading in a Lagrangian-based transport model: 2. Evaluation using new data from the Borden site. Water Resour Res 46:W01510. doi:10.1029/2009WR007810

    Google Scholar 

  • Ritzi RW Jr (2000) Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381. doi:10.1029/2000WR900139

    Article  Google Scholar 

  • Ritzi RW, Allen-King RM (2007) Why did Sudicky [1986] find an exponential-like spatial correlation structure for hydraulic conductivity at the Borden research site? Water Resour Res 43:W01406. doi:10.1029/2006WR004935

    Google Scholar 

  • Ritzi RW, Dai Z, Dominic DF, Rubin Y (2002) Spatial structure of permeability in relation to hierarchical sedimentary architecture in buried-valley aquifers: centimeter to kilometer scales. In: Findikakis A (ed) Bridging the gap between measurements and modeling in heterogeneous media. IAHS and Lawrence Berkeley Laboratory, (on CD-ROM)

  • Ritzi RW, Dai Z, Dominic DF, Rubin YN (2004) Spatial correlation of permeability in crossstratified sediment with hierarchical architecture. Water Resour Res 40(3):W03513. doi:10.1029/2003WR002420

    Google Scholar 

  • Ritzi RW Jr, Huang L, Ramanathan R, Allen-King RM (2013) Horizontal spatial correlation of hydraulic and reactive transport parameters as related to hierarchical sedimentary architecture at the Borden research site. Water Resour Res 49:1901–1913. doi:10.1002/wrcr.20165

    Article  Google Scholar 

  • Rubin Y (1995) Flow and transport in bimodal heterogeneous formations. Water Resour Res 31(10):1468–2461

    Google Scholar 

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, Oxford

    Google Scholar 

  • Rubin Y, Lunt IA, Bridge JS (2006) Spatial variability in river sediments and its link with river channel geometry. Water Resour Res 42:W06D16. doi:10.1029/2005WR004853

  • Rubin Y, Cushey MA, Bellin A (1994) Modeling of transport in groundwater for environmental risk assessment. Stoch Hydrol Hydraul 8(1):57–77

    Article  Google Scholar 

  • Sardin M, Schweich D, Leij FJ, Genuchten MT (1991) Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review. Water Resour Res 27(9):2287–2307

    Article  CAS  Google Scholar 

  • Scheibe TD, Freyberg DL (1995) The use of sedimentological information for geometric simulation of natural porous media structure. Water Resour Res 31:3259–3270

    Article  Google Scholar 

  • van Genuchten MT (1985) A general approach for modeling solute transport in structured soils. Mem Int Assoc Hydrogeol 17(1):513–526

    Google Scholar 

  • White CD, Willis BJ (2000) A method to estimate length distributions from outcrop data. Math Geol 32:389–419. doi:10.1023/A:100751061505

    Article  Google Scholar 

Download references

Acknowledgments

The first author was supported by the National Science Foundation under grant EAR-0810151, and also by a Graduate Fellowship from the college of science and mathematics at Wright State University. Any opinions, findings and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect those of the National Science Foundation or other supporting institutions. We gratefully acknowledge the time and expertise given by three anonymous reviewers and the associate editor. Their constructive comments and suggestions helped us to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Reza Soltanian.

Appendices

Appendix 1: Derivation of spectral density of fluctuations in ln(K)

Considering an exponential covariance function of ln(K) (Dagan 1989; Rubin 2003):

$$ C_{Y} (h) = \sigma _{Y}^{2} {\mkern 1mu} e^{{\left( { - \left| {{\kern 1pt} {\kern 1pt} \frac{h}{\mu }{\kern 1pt} {\kern 1pt} } \right|} \right)}} = \sigma _{Y}^{2} {\mkern 1mu} e^{{\left( { - \sqrt {{\kern 1pt} (\frac{{h_{1} }}{{\mu _{1} }})^{2} + {\kern 1pt} (\frac{{h_{2} }}{{\mu _{2} }})^{2} + {\kern 1pt} (\frac{{h_{3} }}{{\mu _{3} }})^{2} } } \right)}} $$
(33)

where μ i are the integral scales. The Fourier transform of ln(K) is found by:

$$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{C}_{Y} (k) = \frac{1}{{(2\pi)^{3}}}\,\,\int {\int {\int\limits_{- \,\infty}^{\infty} {e^{- ik.h}}}} \,C_{Y} (h)\,dh $$
(34)

Substituting (33) into (34) yields:

$$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{C}_{Y} (k)\, = \frac{1}{{(2\pi)^{3}}}\,\,\int {\int {\int\limits_{- \infty}^{\infty} {e^{- ik.h}}}} \,\sigma_{Y}^{2} \,e^{{\left(- \left|{\frac{h}{\mu}} \right|\right)}}dh $$
(35)

Integrating (35) leads to the following expression for the Fourier transform of ln(K):

$$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{C}_{Y} (k) = \frac{{\sigma_{Y}^{2} \mu_{1} \mu_{2} \mu_{3}}}{{\pi^{2}}}\,\,\frac{1}{{(1 + (\mu k)^{2})^{2}}} $$
(36)

where \( (\mu k)^{2} = (\mu_{1} k_{1})^{2} + (\mu_{2} k_{2})^{2} + (\mu_{3} k_{3})^{2} \). (36) is the Fourier transform of ln(K) for the unimodal porous media. For the multimodal porous media, the multimodal covariance function of ln(K) (Eq. (8) and/or Eq. (9)) is easily integrated to obtain the corresponding Fourier transform of ln(K).

Appendix 2: Derivation of the dispersivity of nonreactive solute

Here we use the integration method suggested by Dagan (1989) to derive the related expression for the dispersivity of a nonreactive solute. Equation (15) contains the following integral:

$$ \alpha_{pq}^{(nr)} (t) = \frac{{\int\nolimits_{0}^{t} {u_{p\,q}} \,(U\,t^{\prime})\,dt^{\prime}}}{U} $$
(37)

where u pq is the flow velocity covariance. The Fourier transform of flow velocity, Eq. (14), is used to evaluate (37). By using (36) we get the Fourier transform of flow velocity in the longitudinal direction as:

$$ \begin{aligned} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{u}_{11} (k) = U^{2} \,\left(1 - \frac{{k^{2}_{1}}}{{k^{2}}}\right)^{2} \,\,\,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{C}_{Y} (k)\,\,\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\, = U^{2} \left(1 - \frac{{k^{2}_{1}}}{{k^{2}}}\right)^{2} \,\,\, \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{C}_{Y} (k)\,\,\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{U^{2} \sigma_{Y}^{2} \mu_{1} \mu_{2} \mu_{3}}}{{\pi^{2}}}\left(1 - \left(\frac{{k_{1}}}{k}\right)^{2}\right)^{2} \frac{1}{{(1 + (\mu k)^{2})^{2}}} \hfill \\ \end{aligned} $$

Therefore,

$$ u_{11} (h) = \frac{{U^{2} \,\sigma_{Y}^{2} \,\mu_{1} \,\mu_{2} \,\mu_{3}}}{{\pi^{2}}}\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\left(1 - \left(\frac{{k_{1}}}{k}\right)^{2}\right)^{2} \,\,\,\frac{1}{{(1 + (\mu k)^{2})^{2}}}\cos (k{\cdot}h)\,dk}}} $$

Hence,

$$ \begin{aligned} \frac{{u_{11} (U\,s,0,0)}}{U} = \frac{{U\,\sigma_{Y}^{2} \,\mu_{1} \,\mu_{2} \,\mu_{3}}}{{\pi^{2}}}\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\left(1 - \left(\frac{{k_{1}}}{k}\right)^{2}\right)^{2} \,\,\,\frac{1}{{(1 + (\mu k)^{2})^{2}}}\cos \left(k_{1} U\,s \right)\,dk}}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathop = \limits_{{k^{\prime}_{i} = \mu_{i} k_{i}}} \,\frac{{U\,\sigma_{Y}^{2} \,}}{{\pi^{2}}}\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\left(\frac{{\mu_{2}^{- 2} \,k_{2}^{2} \, + \mu_{3}^{- 2} \,k_{3}^{2} \,}}{{\,\mu_{1}^{- 2} \,k_{1}^{2} \, + \mu_{2}^{- 2} \,k_{2}^{2} \, + \mu_{3}^{- 2} \,k_{3}^{2}}}\right)^{2} \,\,\frac{1}{{(1 + k^{2})^{2}}}\cos \left(k_{1} \frac{U\,}{{\mu_{1}}}s\right)\,dk}}} \hfill \\ \end{aligned} $$

Changing variables \( s^{\prime} = \mu^{- 1}_{1} \,\,U\,s \) and τ = Ut/μ 1 gives

$$ \alpha_{11}^{(nr)} (t) = \frac{{\,\sigma_{Y}^{2} \,\mu_{1} \,}}{{\pi^{2}}}\int\limits_{0}^{\tau} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\left(\frac{{\mu_{2}^{- 2} \,k_{2}^{2} \, + \mu_{3}^{- 2} \,k_{3}^{2} \,}}{{\,\mu_{1}^{- 2} \,k_{1}^{2} \, + \mu_{2}^{- 2} \,k_{2}^{2} \, + \mu_{3}^{- 2} \,k_{3}^{2}}}\right)^{2} \,\,\,\frac{1}{{(1 + k^{2})^{2}}}\cos (k_{1} \,s^{\prime})\,dk}}}} \,\,ds^{\prime} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, $$

Now we use \( \mu_{1} \, = \mu_{2} = \lambda \) and μ 3 = ɛλ in which ɛ is the anisotropy ratio. Thus,

$$ \alpha_{11}^{(nr)} (t) = \frac{{\sigma_{Y}^{2} \,\lambda}}{{\pi^{2}}}\int\limits_{0}^{\tau} {\,\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\int\limits_{- \infty}^{\infty} {\left(1 - \frac{{k^{2}_{1} \,\,}}{{\,k^{2}_{1} \, + \,k^{2}_{2} \, + \varepsilon^{- 2} \,k^{2}_{3}}}\right)^{2} \,\frac{1}{{(1 + k^{2})^{2}}}\cos (k_{1} \,s)\,dkds}}}} $$

Now changing to spherical coordinate system and defining:

$$ \begin{aligned} k_{1} \, = r\,\cos \,\beta,\,k_{2} \, = r\,\sin \,\beta,\,\,\,k_{3} \, = k_{3} \hfill \\ dk_{1} \,dk_{2} \,dk_{3} = r\,dr\,d\theta \,dk_{3} \hfill \\ \end{aligned} $$

Therefore,

$$ \alpha_{11}^{(nr)} (t) = \frac{{\,\sigma_{Y}^{2} \,\lambda}}{{\pi^{2}}}\int\limits_{0}^{\tau} {ds\,\int\limits_{0}^{\infty} {r\,dr\,\,\int\limits_{0}^{2\,\pi} {d\theta \,\int\limits_{- \infty}^{\infty} {\left(1 - \frac{{r^{2} \cos^{2} \theta}}{{r^{2} + \varepsilon^{- 2} \,k^{2}_{3}}}\right)^{2} \,\frac{\,\cos (sr\,\cos \,\theta)}{{(1 + r^{2} + \,k^{2}_{3})^{2}}}dk_{3}}}}} $$
(38)

In order to derive the above integral the following general integrals are used;

$$ \int\limits_{- \infty}^{\infty} {\frac{1}{{(a^{2} + x^{2})^{2}}}dx = \frac{\pi}{{2a^{3}}}} $$
(39a)
$$ \int\limits_{- \infty}^{\infty} {\frac{1}{{(a^{2} + x^{2})^{2} (b^{2} + x^{2})}}dx = \frac{\pi}{{2(b^{2} - a^{2})a^{3}}}} \, - \frac{\pi}{{(b^{2} - a^{2})^{2}}}\left(\frac{1}{a} - \frac{1}{b}\right) $$
(39b)
$$ \begin{aligned} \int\limits_{- \infty}^{\infty} {\frac{1}{{(a^{2} + x^{2})^{2} (b^{2} + x^{2})^{2}}}dx = \frac{\pi}{{2(b^{2} - a^{2})^{2}}}\left(\frac{1}{{a^{3}}} + \frac{1}{{b^{3}}}\right)} \hfill \\ - \frac{\pi}{{(b^{2} - a^{2})^{3}}}\left(\frac{1}{a} - \frac{1}{b}\right)\, \hfill \\ \end{aligned} $$
(39c)

To evaluate the integral in (38) the following parameters are used in (39a)–(c):

$$ \begin{aligned} a = 1 + r^{2} = u \hfill \\ b = \varepsilon \,r \hfill \\ a{}^{2} - b^{2} = 1 + r^{2} - \varepsilon^{2} r^{2} = v \hfill \\ \end{aligned} $$

Thus, one can derive (38) as follows

$$ \alpha _{{11}}^{{(nr)}} (t) = \sigma _{Y}^{2} {\mkern 1mu} \lambda {\mkern 1mu} {\mkern 1mu} \int\limits_{0}^{\tau } {{\mkern 1mu} ds{\mkern 1mu} \int\limits_{0}^{\infty } {\left\{ {\frac{r}{{2u^{{\frac{3}{2}}} }}A(sr){\mkern 1mu} dr + 2\varepsilon ^{2} r^{3} \left[ {\frac{1}{{2vu^{{\frac{3}{2}}} }} + \frac{1}{{v^{2} u^{{\frac{3}{2}}} }} - \frac{1}{{v^{2} {\mkern 1mu} \varepsilon r}}} \right]{\mkern 1mu} B(sr) + \varepsilon ^{4} r^{5} \left[ {\frac{1}{{2v^{2} u^{{\frac{3}{2}}} }} + \frac{1}{{2v^{2} (\varepsilon r)^{3} }} + \frac{2}{{v^{3} u^{{\frac{1}{2}}} }} - \frac{2}{{v^{3} \varepsilon r}}} \right]C(sr)} \right\}} } {\mkern 1mu} dr{\text{ }} $$
(40)

where

$$ A(sr) = 2J_{o} (sr) $$
(41a)
$$ B(sr) = \frac{{2J_{o} (sr)sr - 2J_{1} (sr)}}{sr} $$
(41b)
$$ C(sr) = \frac{{2(sr)^{3} J_{o} (sr) - 6J_{o} (sr)(sr) + 12J_{1} (sr) - 4J_{1} (sr)(sr)^{2}}}{{(sr)^{3}}} $$
(41c)

The J o and J 1 are the zero and first order Bessel functions, respectively. By changing the variable β =  the integration in (40) yields

$$ \begin{aligned} \alpha_{11}^{(nr)} (t) = \,\sigma_{Y}^{2} \,\,\lambda \,\int\limits_{0}^{\tau} {\,ds\,\int\limits_{0}^{\infty} {\frac{r}{{2u^{\frac{3}{2}}}}A(sr)\,dr\,\,}} \hfill \\ \quad + \sigma_{Y}^{2} \,\,\lambda \int\limits_{0}^{\infty} {4\varepsilon^{2} r^{3} \left[\frac{1}{{2vu^{\frac{3}{2}}}} + \frac{1}{{v^{2} u^{\frac{3}{2}}}} - \frac{1}{{v^{2} \,\varepsilon r}}\right]\,J_{1} (\beta)} \,dr \hfill \\ \quad + \sigma_{Y}^{2} \,\,\lambda \int\limits_{0}^{\infty} {\varepsilon^{4} r^{5} \left[\frac{1}{{2v^{2} u^{\frac{3}{2}}}} + \frac{1}{{2v^{2} (\varepsilon r)^{3}}} + \frac{2}{{v^{3} u^{\frac{1}{2}}}} - \frac{2}{{v^{3} \varepsilon r}}\right]\left[\,\frac{{2J_{1} (\beta)\beta^{2} \, - 4J_{1} (\beta) + 2J_{0} (\beta)\beta}}{{\beta^{2}}}\right]dr} \hfill \\ \end{aligned} $$

In the above integral one can use the following general integral

$$ \int\limits_{0}^{\tau} {\,ds\,\int\limits_{0}^{\infty} {\frac{r}{{2u^{\frac{3}{2}}}}A(s\,r)\,d\,r\,\,}} = \int\limits_{0}^{\infty} {\frac{{\tau \,J_{o} (\beta)}}{{1 + r^{2} + r\sqrt {1 + r^{2}}}}dr = 1 - e^{- s}} $$
(42)

Finally, α (nr)11 (t) is found as follows

$$ \alpha_{11}^{(nr)} (t)\,=\,\sigma_{Y}^{2} \,\,\lambda \{\,1 - e^{- \tau} - \varepsilon \int\limits_{0}^{\infty} {[2\,r\,J_{1} (\beta)} \frac{{2u^{\frac{3}{2}} \, - \varepsilon \,r(v + 2u)}}{{v^{2} u^{\frac{3}{2}}}} + F(r)]dr $$
(43)

where

$$ \begin{aligned} F(r) = \left[\,\frac{{(2 - \beta^{2})J_{1} (\beta)\, - \beta J_{0} (\beta)}}{{r\,\tau^{2}}}\right]\left[\frac{{\varepsilon^{3} \,r^{3} (v + 4u) + u^{\frac{3}{2}} (5v - 4u)}}{{v^{3} \,u^{\frac{3}{2}}}}\right] \hfill \\ u = 1 + r^{2} \hfill \\ \beta = r\,\tau \hfill \\ v = 1 + r^{2} - \varepsilon^{2} r^{2} \hfill \\ \end{aligned} $$

Appendix 3: Statistical moments of t m

The first two temporal moments of t m are given by the following expressions (Quinodoz and Valocchi 1993; Massabó et al. 2008):

$$ \mu_{{t_{m}}} (t)\, = \int\limits_{0}^{\infty} {t_{m}} \,p(t_{m})\,dt_{m} = \frac{{t + K^{2}_{d} \,e^{- \Upsilon} t + 2K_{d} [1 - e^{- \Upsilon}]\,}}{{R_{d} [1 + K_{d} e^{- \Upsilon}][k_{r} R_{d}]}}\, $$
(44)
$$ \begin{aligned} \sigma_{{t_{m}}}^{2} (t)\, = \int\limits_{0}^{\infty} {(t_{m}} - \mu_{{t_{m}}})^{2} \,p(t_{m})\,dt_{m} \hfill \\ \quad = [R_{d}^{2} (1 + K_{d} \,e^{- \Upsilon})]^{- 1} \{t^{2} + \frac{{6K_{d}}}{{k_{r} R_{d}}}[t - K_{d} e^{- \Upsilon} t]\, \hfill \\ \quad + K_{d}^{3} e^{- \Upsilon} t^{2} + 6K_{d} (K_{d} - 1)[(k_{r} R_{d})^{- 2} - (k_{r} R_{d})^{- 2} e^{- \Upsilon}]\} - \,\mu_{{t_{m}}}^{2} (t) \hfill \\ \end{aligned} $$
(45)

where p(t m ) is the pdf of t m given by the expression (22), \( R_{d} = 1 + K_{d} \), and \( \Upsilon = k_{r} \,R_{d} \,t \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanian, M.R., Ritzi, R., Dai, Z. et al. Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. Stoch Environ Res Risk Assess 29, 709–726 (2015). https://doi.org/10.1007/s00477-014-0922-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0922-3

Keywords

Navigation