Skip to main content

Advertisement

Log in

Recent advances in argan propagation: a review

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This paper summarizes recent findings on argan propagation through conventional and tissue culture techniques and outlines the advantages and limitations of each method. New directions for future research are proposed.

Abstract

Argan (Argania spinosa (L.) Skeels) is an agroforestry species that produces one of the most expensive oils in the world. In 1998, the endemic argan forest in Morocco was recognized as a Biosphere Reserve by UNESCO. Since then, argan has gained considerable international attention. Argan is primarily found in a limited coastal area of Morocco and is threatened by various biotic and abiotic factors, including overexploitation, urban expansion, overgrazing, successive years of drought, and climate change. Moreover, argan is difficult to propagate. Because the demand for argan products is constantly increasing, many researchers have attempted to develop efficient propagation methods using both conventional and tissue culture techniques. Conventional propagation has been successfully achieved by seeds, stem cuttings, and by grafting. In vitro propagation has been achieved through seed germination, nodal segment culture, micrografting, and organogenesis from zygotic explants. To the best of our knowledge, there have been no reports on regeneration of argan via somatic embryogenesis or adventitious organogenesis from adult tissues. In this review, we discuss the main methods of argan propagation, summarize the progress made in this field, and report the most relevant findings from the literature. In addition, we highlight the advantages and limitations of each propagation method and propose new directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BAP:

6-benzylaminopurine

GA3 :

Gibberellic acid

GAs:

Gibberellins

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

NAA:

1-naphthaleneacetic acid

PGR:

Plant growth regulator

TDZ:

Thidiazuron

References

  • Achnin N, Diria G, Gaboun F, Amghar I, El Machmachi M, Iraqi D, Labhilili M, Mentag R, El Ibaoui H, Abdelwahd R (2017) Induction de l’embryogenèse somatique chez l’arganier (Argania spinosa (L.) Skeels) et étude histologique. Proceedings fourth international congress on argan, Agadir, Morocco, pp 258–260

  • Achour A (2014) Contribution à l’étude de la phénologie de l’arganier et de la biodiversité au sein d’une parcelle clôturée. Evaluation d’un essai de régénération artificielle. PhD dissertation, Ibn Zohr University, Morocco

  • Ait Aabd N, Bouharroud R, Tahiri A, Wifaya A, Mimouni A, El Mousadik A (2019) Genetic diversity and breeding of argan tree (Argania spinosa L. Skeels). In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: nut and beverage crops. Springer, Cham, pp 31–56

    Chapter  Google Scholar 

  • Ait Hammou R, Daoud S, Harrouni MC (2018) Effet de l’âge, des têtes de clones, de la position du ramet et du traitement à l’AIB sur l’enracinement des boutures de l’arganier (Argania spinosa L. Skeels). Rev Mar Sci Agron Vét 6:446–453

    Google Scholar 

  • Alouani M, Bani-Aameur F (2003) Effect of light on germination of Argan (Argania spinosa (L.) Skeels) seeds. J Acta Bot Gallica 150:59–64

    Article  Google Scholar 

  • Alouani M, Bani-Aameur F (2014) Viabilité et vieillissement des semences d’arganier (Argania spinosa (L.) Skeels). Afr Sci 10:245–255

    Google Scholar 

  • Amghar I, Ibriz M, Ibrahimi M, Boudra A, Gaboun F, Meziani R, Iraqi D, Mazri MA, Diria G, Abdelwahd R (2021a) In vitro root induction from argan (Argania spinosa (L.) Skeels) adventitious shoots: Influence of ammonium nitrate, auxins, silver nitrate and putrescine, and evaluation of plantlet acclimatization. Plants 10:1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amghar I, Diria G, Boumlik I, Gaboun F, Iraqi D, Labhilili M, Mentag R, Meziani R, Mazri MA, Ibriz M, Abdelwahd R (2021b) An efficient regeneration pathway through adventitious organogenesis for the endangered Argania spinosa (L.) Skeels. Vegetos 34:355–367

    Article  Google Scholar 

  • Ashrafzadeh S (2020) In vitro grafting—twenty-first century’s technique for fruit tree propagation. Acta Agric Scand Sect B Soil Plant Sci 70:404–405

    Google Scholar 

  • Aytac S, Arslanoglu SF, Ayan AK (2018) High-temperature inhibition of seed germination of hemp (Cannabis sp.). Fresenius Env Bull 27:8200–8204

    CAS  Google Scholar 

  • Bani-Aameur F, Alouani M (1999) Viabilité et dormance des semences d’arganier (Argania spinosa (L.) Skeels). Ecol Mediterr 25:75–86

    Article  Google Scholar 

  • Bao WW, Zhang XC, Zhang AL, Zhao L, Wang QC, Liu ZD (2020a) Validation of micrografting to analyze compatibility, shoot growth, and root formation in micrografts of kiwifruit (Actinidia spp.). Plant Cell Tiss Org Cult 140:209–214

    Article  Google Scholar 

  • Bao WW, Zhang XC, Zhang AL, Zhao L, Wang QC, Liu ZD (2020b) Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.). Plant Cell Tiss Org Cult 140:291–300

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier, San Diego

    Google Scholar 

  • Bellefontaine R, Ferradous A, Alifriqui M, Monteuuis O (2010) Multiplication végétative de l’arganier, Argania spinosa, au Maroc: le projet John Goelet. Bois For Trop 304:47–59

    Article  Google Scholar 

  • Benaouf Z, Miloudi A, Belkhodja M (2014) Germination tests of seeds of argan tree (Argania spinosa (L.) skeels) of two sources (Tindouf and Mostaganem) in the semi-arid western Algerian. Afr J Plant Sci 8:260–270

    Article  Google Scholar 

  • Benbya A, Mdarhri Alaoui M, Gaboun F, Delporte F, Cherkaoui S (2018) Vegetative propagation of Argania spinosa (L) skeels cuttings: effects of nutrient solution. Int J Environ Agric Biotechnol 3:1369–1381

    Google Scholar 

  • Benomar I (2008) Diagnostic des systèmes d’utilisation des terres et identification des unités socio-territoriales dans les zones forestières et péri-forestières du massif d’Amsitten (cas de trois communes rurales: Smimou, Imin Tlit et Ida Ou Azza). MSc dissertation, École Nationale Forestière d’Ingénieurs, Morocco

  • Berka S, Harfouche A (2001) Effets de quelques traitements physico-chimiques et de la température sur la faculté germinative de la graine d’arganier. Revue Forestière Française LIII:125–130

    Article  Google Scholar 

  • Berka S, Himrane H, Taguemount D, Tabet M, Aid F (2018) Contribution à l’étude de la germination et de la conservation des graines d’Argania spinosa (L.) Skeels de la région de Tindouf (Algérie). Rev Ecol 73:309–317

    Google Scholar 

  • Bonga JM (1982) Vegetative propagation in relation to juvenility, maturity and rejuvenation. In: In: Bonga JM, Durzan DJ (eds) Tissue culture in forestry. Martinus Nijhoff, Dordrecht, pp 387–412

    Chapter  Google Scholar 

  • Bousselmame F, Kenny L, Chlyah H (2001) Optimisation des conditions de cultures pour l’enracinement in vitro de l’arganier (Argania spinosa L.). Life Sci 324:995–1000

    CAS  Google Scholar 

  • Bouzoubaâ Z, El Moussadik A (2003) Effet de la température, du déficit hydrique et de la salinité sur la germination de l’arganier, Argania spinosa (L.) Skeels. Acta Bot Gallica 150:321–330

    Article  Google Scholar 

  • Charrouf Z, Guillaume D (2008) Argan oil: occurrence, composition and impact on human health. Eur J Lipid Sci Technol 110:632–636

    Article  CAS  Google Scholar 

  • Charrouf Z, Guillaume D (2014) Argan oil, the 35-years-of-research product. Eur J Lipid Sci Technol 116:1316–1321

    Article  CAS  Google Scholar 

  • Darikova JA, Savva YV, Vaganov EA, Grachev AM, Kuznetsova GV (2011) Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). J Siber Fed Univer Biol 4:54–63

    Article  Google Scholar 

  • De Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, Fiegener R (2020) Seed storage: maintaining seed viability and vigor for restoration use. Restor Ecol 28:S249–S255

    Article  Google Scholar 

  • De Waroux YLP, Lambin EF (2013) Niche commodities and rural poverty alleviation: Contextualizing the contribution of argan oil to rural livelihoods in Morocco. Ann Assoc Am Geogr 103:589–607

    Article  Google Scholar 

  • Devi N, Arumugam T (2019) Salinity tolerance in vegetable crops: a review. J Pharm Phytochem 8:2717–2721

    CAS  Google Scholar 

  • El Abbassi K (2019) Apports des biotechnologies et des techniques analytiques à la valorisation de l’arganeraie marocaine. MSc dissertation, École Nationale d’Agriculture de Meknes, Morocco

  • El Bahloul Y, Dauchot N, Machtoun I, Gaboun F, Van Cutsem P (2014) Development and characterization of microsatellite loci for the Moroccan endemic endangered species Argania Spinosa (Sapotaceae). Appl Plant Sci 2(4):1300071

    Article  Google Scholar 

  • El Kharrassi Y, Maata N, Mazri MA, El Kamouni S, Talbi M, El Kebbaj R, Moustaid K, Essamadi AK, Andreoletti P, El Mzouri EH, Cherkaoui-Malki M, Nasser B (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Char 12:747–754

    Article  Google Scholar 

  • Ferradous A, Alifriqui M, Bellefontaine R (2011) Optimisation des techniques de bouturage sous mist chez l’arganier. Proceedings first international congress on argan, Agadir, Morocco, pp 135–144

  • Ferradous A, Alifriqui M, Ouhammou A, Khalil H (2015) Evaluation des effets combinés de la fertilisation et du substrat sur le développement des plants d’arganier (Argania spinosa L. Skeels) en pépinière. Proceedings third international congress on argan, Agadir, Morocco, pp 191–194

  • Fleming MB, Richards CM, Walters C (2017) Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot 68:2219–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • Genin M, Alifriqui M, Fakhech A, Hafidi M, Ouahmane L, Genin D (2017) Back to forests in pre-Saharan Morocco? When prickly pear cultivation and traditional agropastoralism reduction promote argan tree regeneration. Silva Fennica 51:1618

    Article  Google Scholar 

  • Giri C, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees Struct Funct 18:115–135

    Article  Google Scholar 

  • Guedira M (1981) Étude expérimentale sur la germination des semences d’arganier. MSc dissertation, Institut Agronomique et Vétérinaire Hassan II, Morocco

  • Guillaume D, Charrouf Z (2016) Functional food and sustainable development once met in the argan forest: the tale of argan oil. In: In: Kristbergsson K, Otles S (eds) Functional properties of traditional foods. Springer, New York, pp 309–320

    Chapter  Google Scholar 

  • Guinda A, Rada M, Delgado T, Castellano JM (2011) Pentacyclic triterpenic acids from Argania spinosa. Eur J Lipid Sci Technol 113:231–237

    Article  CAS  Google Scholar 

  • Hammed AL, Aliyu OM, Dada KE, Egbewale SO (2014) Cultivar type and nut-sowing orientation influence germination and plant vigor in cashew (Anacardium occidentale L.). Int J Fruit Sci 14:69–80

    Article  Google Scholar 

  • Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M, Alizadeh M (2018) Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments. J Genet Eng Biotech 16:175–180

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California agricultural experimental station circular No. 47. University of California, Berkeley, pp 1–32

    Google Scholar 

  • Ikinci A (2014) Effects of the water presoaking duration and gibberellic acid treatments on seed germination of Argania Spinosa L. under nursery conditions. Fresenius Env Bull 23:138–143

    CAS  Google Scholar 

  • Justamante MS, Ibáñez S, Villanova J, Pérez-Pérez JM (2017) Vegetative propagation of argan tree (Argania spinosa (L.) Skeels) using in vitro germinated seeds and stem cuttings. Sci Hortic 225:81–87

    Article  CAS  Google Scholar 

  • Khelifi L, Morsli A, Khelifi-Slaoui M (1996) Premiers résultats sur l’obtention in vitro de germinations d’arganier “Argania spinosa (L.) Skeel”. Ann Agro I N A 17:120–126

    Google Scholar 

  • Knop P (1865) Quantitative watersuchunger ûber den ernahrungsprozess der pflanzen. Landw Versuchs stat 7:93–107

    Google Scholar 

  • Koufan M (2014) Étude préliminaire du développement in vitro de l’arganier (Argania spinosa). MSc dissertation, École Nationale d’Agriculture de Meknes, Morocco

  • Koufan M, Belkoura I, Alaoui T (2018) The multiplication of the argane tree by microcutting (Argania spinosa L. Skeels). Eur J Biotechnol Biosci 6:47–52

    Google Scholar 

  • Koufan M, Belkoura I, Mazri MA, Amarraque A, Essatte A, Elhorri H, Zaddoug F, Alaoui T (2020a) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tiss Organ Cult 141:217–227

    Article  CAS  Google Scholar 

  • Koufan M, Mazri MA, Essatte A, Moussafir S, Belkoura I, El Rhaffari L, Toufik I (2020b) A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tiss Organ Cult 142:369–378

    Article  CAS  Google Scholar 

  • Lamaoui M (2015) Sélection in vitro de génotypes de l’arganier (Argania spinosa L.) tolérants aux stress hydrique et salin et multiplication par microbouturage. PhD dissertation, Cadi Ayyad University, Morocco

  • Lamaoui M, Chakhchar A, El Kharrassi Y, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2019) Selection and multiplication of argan (Argania spinosa L.) superior clones for conservation purposes. Acta Sci Agric 3:116–123

    Google Scholar 

  • Lamnouni I, Cherkaoui S, Hmouni D, Oukmi M, Mdarhri Alaoui M (2019) Induction de l’embryogenèse somatique chez l’arganier (Argania spinosa (L.) Skeels). Proceedings fifth international congress on argan, Agadir, Morocco, pp 405–409

  • Leakey RRB (1985) The capacity for vegetative propagation in trees. In: In: Cannell MGR, Jackson JE (eds) Attributes of trees as crop plants. Institute of Terrestrial Ecology, Abbots Ripton, Huntingdon, pp 110–133

    Google Scholar 

  • Li B, Zhang P, Wang F, Li R, Liu J, Wang Q, Liu W, Wang B, Hu G (2021) Integrated analysis of the transcriptome and metabolome revealed candidate genes involved in GA3-induced dormancy release in Leymus chinensis seeds. Int J Mol Sci 22:4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lybbert TJ, Aboudrare A, Chaloud D, Magnan N, Nash M (2011) Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc Natl Acad Sci 108:13963–13968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazri MA, Meziani R, Elmaataoui S, Alfeddy MN, Jaiti F (2019) Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda Vegetos 32:333–344

    Article  Google Scholar 

  • Mdarhri Alaoui M, Boukmou J, Bouzoubaa Z (2011) Application de la biotechnologie pour la sauvegarde de l’arganeraie: étude de la multiplication in vitro. Proceedings first international congress on argan, Agadir, Morocco, pp 119–123

  • Metougui ML (2017) Étude de la variabilité agro-morphologique de la population d’arganier (Argania spinosa L. skeels) d’Admine et contribution à la domestication de l’espèce. PhD dissertation, Institut Agronomique et Vétérinaire Hassan II, Morocco

  • Metougui ML, Machati I, Mokhtari M (2015) Multiplication végétative de l’arganier (Argania spinosa (L) Skeels.) par bouturage. Proceedings third international congress on argan, Agadir, Morocco, pp 254–257

  • Metougui ML, Mokhtari M, Machati I, Azeroual I, Benlhabib O (2017) Multiplication végétative de l’arganier (Argania spinosa) par bouturage et par greffage. Rev Mar Sci Agron Vét 5:428–436

    Google Scholar 

  • Meziani R, Mazri MA, Arhazzal M, Belkoura I, Alem C, Jaiti F (2019) Evaluation of in vitro shoot elongation and rooting of date palm, and determination of physiological characteristics of regenerated plantlets. Not Sci Biol 11:77–85

    Article  CAS  Google Scholar 

  • M’hirit O, Benzyane M, Benchekroun F, El Yousfi SM, Bendaanoun M (1998) L’arganier: Une espèce fruitière-forestière à usages multiples. Mardaga, Sprimont

    Google Scholar 

  • Mokhtari M (2002) Le greffage de l’arganier, un challenge pour la multiplication clonale. Bull Mens d’Info Liaison du PNTTA 95:3–4

    Google Scholar 

  • Mokhtari M, Benismail MC, Ljirri L, Nassiri S (2011) Développement d’un système de production de plants d’arganier par greffage. Proceedings first international congress on argan, Agadir, Morocco, pp 100–108

  • Mouhaddab J, Msanda F, Filali-Maltouf A, Belkadi B, Ferradouss A, El Modafar C, Koraichi SI, El Mousadik A (2017) Using microsatellite markers to map genetic diversity and population structure of an endangered Moroccan endemic tree (Argania spinosa L. Skeels) and development of a core collection. Plant Gene 10:51–59

    Article  CAS  Google Scholar 

  • Moukrim S, Lahssini S, Rhazi M, Mharzi Alaoui H, Benabou A, Wahby I, El Madihi M, Arahou M, Rhazi L (2019) Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study. Agroforest Syst 93:1209–1219

    Article  Google Scholar 

  • Moussafir S (2019) Amélioration de la technique de microgreffage chez l’arganier. MSc dissertation, École Nationale d’Agriculture de Meknes, Morocco

  • Msanda F (1993) Écologie et cartographie des groupements végétaux d’Anzi (Anti-Atlas occidental, Maroc) et contribution à l’étude de la diversité génétique de l’arganier (Argania spinosa (L.) Skeels). PhD dissertation, Joseph-Fourier University, France

  • Msanda F, El Aboudi A, Peltier JP (2005) Biodiversité et biogéographie de l’arganeraie marocaine. Cah Agric 14:357–364

    Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479

    Article  CAS  Google Scholar 

  • Nouaim R, Chaussod R (2011) Des vergers d’arganier: Une agriculture innovante pour une production durable d’huile d’argane. Proceedings first international congress on argan, Agadir, Morocco, pp 71–78

  • Nouaim R, Mangin G, Breuil MC, Chaussod R (2002) The argan tree (Argania spinosa) in Morocco: Propagation by seeds, cuttings and in-vitro techniques. Agroforest Syst 54:71–81

    Article  Google Scholar 

  • Ouhiwa H (2008) Contribution à l’étude de la variabilité des graines d’arganier (Argania spinosa) en rapport avec la durée de stockage et la provenance. MSc dissertation, Institut Agronomique et Vétérinaire Hassan II, Morocco

  • Oukmi M, Cherkaoui S, Hmouni D, Lamnouni I, Mdarhri Alaoui M (2019) Optimisation de la multiplication d’Argania spinosa (L.) Skeels par l’embryogenèse somatique à partir des cotylédons. Proceedings fifth international congress on argan, Agadir, Morocco, pp 134–138

  • Pandey B, Choudhary KK (2019) Air pollution: role in climate change and its impact on crop plants. In: In: Choudhary KK, Kumar A, Singh AK (eds) Climate change and agricultural ecosystems. Woodhead Publishing, Sawston, pp 211–247

    Chapter  Google Scholar 

  • Rahib Y, Elorf A, Sarh B, Bonnamy S, Chaoufi J, Ezahri M (2019) Experimental analysis on thermal characteristics of argan nut shell (ANS) biomass as a green energy resource. Int J Renew Energy Res 9:1606–16015

    Google Scholar 

  • Rahib Y, Sarh B, Chaoufi J, Bonnamy S, Elorf A (2020) Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production. J Therm Anal Calorim 145:2405–2416

    Article  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Roberts EH (1988) Temperature and seed germination. Symp Soc Exp Biol 42:109–132

    CAS  PubMed  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shelar VR, Shaikh RS, Nikam AS (2008) Soybean seed quality during storage: a review. Agric Rev 29:125–131

    Google Scholar 

  • Simlat M, Ślęzak P, Moś M, Warchoł M, Skrzypek E, Ptak A (2016) The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci Hortic 211:295–304

    Article  CAS  Google Scholar 

  • Simon E, Minchin A, McMenamin MM, Smith J (1976) The low temperature limit for seed germination. New Phytol 77:301–311

    Article  Google Scholar 

  • Skubacz A, Daszkowska-Golec A (2017) Seed dormancy: the complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In: In: El-Esawi M (ed) Phytohormones-signaling mechanisms and crosstalk in plant development and stress responses. InTech, New York, pp 77–100

    Google Scholar 

  • Soares VC, Scremin-Dias E, Daibes LF, Damasceno-Junior GA, Pott A, de Lima LB (2021) Fire has little to no effect on the enhancement of germination, but buried seeds may survive in a Neotropical wetland. Flora 278:151801

    Article  Google Scholar 

  • Taoufiq MS, Bouzoubaa Z, Hatimi A, Tahrouch S (2011) Étude et optimisation des techniques de régénération chez l’arganier (Argania spinosa (L.) Skeels). Proceedings first international congress on argan, Agadir, Morocco, pp 330–336

  • Tazi MR, Berrichi A, Haloui B (2001) Germination et croissance in vitro de l’arganier (Argania spinosa L. Skeels) des Beni-Snassen (Maroc oriental) à différentes concentrations en NaCl. Actes Inst Agron Vet 3:163–168

    Google Scholar 

  • Tazi MR, Berrichi A, Haloui B (2003) Effet du polyéthylène glycol sur la germination et la croissance in vitro de l’arganier (Argania spinosa L. Skeels) des Beni-Snassen (Maroc oriental). Science et Changements Planétaires/Sécheresse 14:23–27

    Google Scholar 

  • Vidoy-Mercado I, Narváez I, Palomo-Ríos E, Litz RE, Barceló-Muñoz A, Pliego-Alfaro F (2021) Reinvigoration/rejuvenation induced through micrografting of tree species: signaling through graft union. Plants 10:1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YQ (2011) Plant grafting and its application in biological research. Chin Sci Bull 56:3511–3517

    Article  Google Scholar 

  • Yamaguchi S, Kamiya Y (2001) Gibberellins and light-stimulated seed germination. J Plant Growth Regul 20:369–376

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Andreasen C (2016) Effect of reduced oxygen concentration on the germination behavior of vegetable seeds. Hortic Environ Biotechnol 57:453–446

    Article  CAS  Google Scholar 

  • Zahidi A, Bani-Aameur F, El Mousadik A (2013) Morphological variability of the fruiting branches in Argania spinosa: Effects of seasonal variations, locality and genotype. J Hortic Forest 5:168–182

    Google Scholar 

  • Zia S, Khan MA (2004) Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot 82:151–157

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaad Amine Mazri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Klimaszewska.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Seed Biology and Micropropagation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazri, M.A., Koufan, M., Moussafir, S. et al. Recent advances in argan propagation: a review. Trees 36, 1455–1476 (2022). https://doi.org/10.1007/s00468-021-02262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02262-0

Keywords

Navigation