Skip to main content

Advertisement

Log in

An efficient regeneration pathway through adventitious organogenesis for the endangered Argania spinosa (L.) Skeels

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

An efficient in vitro propagation system through adventitious organogenesis is reported for argan (Argania spinosa (L.) Skeels). Seed germination of two argan genotypes, ‘Mejji’ and ‘R’zwa’, was evaluated under different treatments. Afterwards, the effects of different factors on adventitious shoot bud induction, shoot multiplication, elongation and rooting were evaluated. The findings of this study showed that soaking argan seeds in GA3 during 12 h speeds germination increases the germination percentage. Besides, the use of a sucrose-free medium, without ammonium and with a low nitrate concentration significantly increased the germination percentage. To induce organogenesis, different seedling-derived explants were used. However, epicotyl segments were the only explants capable of regenerating adventitious shoot buds. Highest organogenesis percentage (79.17%) was observed in genotype ‘Mejji’ on Murashige and Skoog (MS) medium containing 2 mg L−1 6-benzylaminopurine (BAP) under dark conditions. Adventitious shoot bud multiplication was performed on MS medium supplemented with different combinations of BAP and GA3. The highest number of adventitious shoot buds per explant (4.0) was observed on MS medium containing 1 mg L−1 BAP and 2 mg L−1 GA3. Regarding in vitro root induction, it was found that combining indole-3-butyric acid (IBA) and putrescine is necessary for rhizogenesis. The highest rooting percentage (56.66% in genotype ‘R’zwa’) was observed on MS medium supplemented with 1.5 mg L−1 IBA and 160 mg L−1 putrescine, with an average number of 2.74 roots per shoot and an average root length of 1.93 cm. The regenerated plantlets were successfully acclimatized and showed normal growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azad MS, Paul NK, Matin MA (2010) Do pre-sowing treatments affect seed germination in Albizia richardiana and Lagerstroemia speciosa. Front Agric China 4:181–184

    Article  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, San Diego, p 1600

    Google Scholar 

  • Beck SL, Dunlop R, Staden JV (2000) Meristem culture of Acacia mearnsii. Plant Growth Regul 3:49–58

    Article  Google Scholar 

  • Benaouf Z, Miloudi A, Belkhodja M (2014) The physiological and behavioural responses of argan seedlings (Argania spinosa (L.) Skeels) to water stress in the semi-arid Western Algeria. Int J Plant Physiol Biochem 6:44–55

    Article  Google Scholar 

  • Bicalho EM, Pinto-Marijuan M, Morales M, Muller M, Munné-Bosch S, Garcia QS (2015) Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biol 17:990–996

    Article  CAS  PubMed  Google Scholar 

  • Blazkova A, Sotta B, Tranvan H, Maldiney R, Bonnet M, Einhorn JH, Kerhoas L, Miginiac E (1997) Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol Plant 99:73–80

    Article  CAS  Google Scholar 

  • Bousselmane F, Kenny L, Chlyah H (2001) Optimisation des conditions de cultures pour l’enracinement in vitro de l’arganier (Argania spinosa L.). Life Sci 324:995–1000

    Google Scholar 

  • Caboni E, Tonelli MG, Lauri P, Iacovacci P, Kevers C, Damiano C, Gaspar T (1997) Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biol Plant 39:91–97

    Article  CAS  Google Scholar 

  • Cavusoglu A, Sulusoglu M (2015) The effects of exogenous gibberellin on seed germination of the fruit species. Türk Bilimsel Derlemeler Dergisi 8:6–9

    Google Scholar 

  • Chauhan DK, Thakur AK, Dass A, Linna JM, Malik SK (2012) Direct organogenesis from leaf explants of Garcinia indica Choisy: an important medicinal plant. Indian J Biotechnol 11:215–219

    CAS  Google Scholar 

  • Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristofori V, Rouphael Y, Rugini E (2010) Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Sci Hortic 124:189–194

    Article  CAS  Google Scholar 

  • de Gyves EM, Royani JI, Rugini E (2007) Efficient method of micropropagation and in vitro rooting of teak (Tectona grandis L.) focusing on large-scale industrial plantations. Ann For Sci 64:73–78

    Article  Google Scholar 

  • de Waroux YP, Lambin EF (2012) Monitoring degradation in arid and semi-arid forests and woodlands: the case of the Argan woodlands (Morocco). Appl Geogr 32:777–786

    Article  Google Scholar 

  • Dutra D, Johnson TR, Kauth PJ, Stewart SL, Kane ME, Richardson L (2008) Asymbiotic seed germination, in vitro seedling development, and greenhouse acclimatization of the threatened terrestrial orchid Bletia purpurea. Plant Cell Tissue Organ Cult 94:11–21

    Article  Google Scholar 

  • El Kbiach ML, Lamarti A, Abdali A, Badoc A (2002) Culture in vitro des bourgeons axillaires de Chêne-liège (Quercus suber L.) influence des régulateurs de croissance sur la multiplication et l’enracinement. Bull Soc Pharm Bordeaux 141:73–88

    Google Scholar 

  • El Kharrassi Y, Maata N, Mazri MA, El Kamouni S, Talbi M, El Kebbaj R, Moustaid K, Essamadi AK, Andreoletti P, El Mzouri EH, Cherkaoui-Malki M, Nasser B (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Char 12:747–754

    Article  Google Scholar 

  • George EF (2008) Plant tissue culture procedure-background. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 1–28

    Google Scholar 

  • Girijashankar V (2012) In vitro regeneration of Eucalyptus camaldulensis. Physiol Mol Biol Plants 18:79–87

    Article  CAS  PubMed  Google Scholar 

  • Hakemi Z, Mehdadi Z, El Mestari O, Dellaoui H (2020) Study of the germinative behaviour of Aristolochia baetica L. seeds of Tessala mount (west of Algeria). J Stress Physiol Biochem 16:39–49

    CAS  Google Scholar 

  • Huh YS, Lee JK, Nam SY, Hong EY, Paek KY, Son SW (2016) Effects of altering medium strength and sucrose concentration on in vitro germination and seedling growth of Cypripedium macranthos Sw. J Plant Biotechnol 43:132–137

    Article  Google Scholar 

  • Johnson RB, Onwuegbuzie A, Turner L (2007) Toward a definition of mixed methods research. J Mix Methods Res 1:112–133

    Article  Google Scholar 

  • Justamante MS, Ibáñez S, Villanova J, Pérez JM (2017) Vegetative propagation of argan tree (Argania spinosa (L.) Skeels) using in vitro germinated seeds and stem cuttings. Sci Hortic 225:81–87

    Article  CAS  Google Scholar 

  • Kauth PJ, Vendrame WA, Kane ME (2006) In vitro seed culture and seedlings development of Calopogon tuberosus. Plant Cell Tissue Organ Cult 85:91–102

    Article  Google Scholar 

  • Khalisi AA, Al-Joboury KR (2012) In vitro propagation of Acacia farnesiana. Al-Mustansiriya J Sci 23:29–34

    Google Scholar 

  • Koufan M, Belkoura I, Alaoui T (2018) The multiplication of the argane tree by microcutting (Argania spinosa L. Skeels). Eur J Biotechnol Biosci 6:47–52

    Google Scholar 

  • Koufan M, Mazri MA, Essatte A, Moussafir S, Belkoura I, El Rhaffari L, Toufik I (2020a) A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Cult 142:369–378

    Article  CAS  Google Scholar 

  • Koufan M, Belkoura I, Mazri MA, Amarraque A, Essatte A, Elhorri H, Zaddoug F, Alaoui T (2020b) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tissue Organ Cult 141:217–227

    Article  CAS  Google Scholar 

  • Lamaoui M, Chakhchar A, El Kharrassi Y, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2019) Selection and multiplication of argan (Argania spinosa L.) superior clones for conservation purposes. Acta Sci Agric 3:116–123

    Google Scholar 

  • Lefhaili A (2010) FAO forest resources assessment: Morocco Country Report. FAO, Rome

    Google Scholar 

  • M’hirit O, Benzyane M, Benchekroun F, El Yousfi SM, Bendaanoun M (1998) L’arganier, une espèce fruitière forestière à usages multiples. Mardaga, Sprimont, p 150

    Google Scholar 

  • Mangal M, Sharma D, Sharma M, Kumar S (2014) In vitro regeneration in olive (Olea europaea L.) cv, ‘Frontio’ from nodal segments. Indian J Exp Biol 25:912–916

    Google Scholar 

  • Mazri MA, Meziani R (2013) An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J Plant Biochem Biotechnol 22:176–184

    Article  CAS  Google Scholar 

  • Mazri MA, Meziani R, El Fadile J, Ezzinbi A (2016) Optimization of medium composition for in vitro shoot proliferation and growth of date palm cv. Mejhoul. 3 Biotechnol 6:111

    Google Scholar 

  • Mazri MA, Naciri R, Belkoura I (2020) Maturation and conversion of somatic embryos derived from seeds of olive (Olea europaea L.) cv. Dahbia: occurrence of secondary embryogenesis and adventitious bud formation. Plants 9(11):1489

    Article  CAS  PubMed Central  Google Scholar 

  • Mezghenni H, Hamrouni L, Hanana M, Jamoussi B, Bouzid S, Khouja ML (2014) Multiplication de l’Arganier Argania spinosa (L.) Skeels. J New Sci 10:1–12

    Google Scholar 

  • Meziani R, Jaiti F, Mazri MA, Anjarne M, Ait Chitt M, El Fadile J, Alem C (2015) Effects of plant growth regulators and light intensity on the micropropagation of date palm (Phoenix dactylifera L.) cv. Mejhoul. J Crop Sci Biotechnol 18:325–331

    Article  Google Scholar 

  • Meziani R, Mazri MA, Arhazzal M, Belkoura I, Alem C, Jaiti F (2019) Evaluation of in vitro shoot elongation and rooting of date palm, and determination of physiological characteristics of regenerated plantlets. Not Sci Biol 11(1):77–85

    Article  CAS  Google Scholar 

  • Msanda F, El Aboudi A, Jean-Paul P (2005) Biodiversité et biogéographie de l’arganeraie marocaine. Cahiers Agric 14:357–364

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479

    Article  CAS  Google Scholar 

  • Nathiya S, Pradeepa D, Devasena T, Senthil K (2013) Studies on the effect of sucrose, light and hormones on micropropagation and in vitro flowering of Withania somnifera var. Jawahar-20. J Anim Plant Sci 23:1391–1397

    CAS  Google Scholar 

  • Nouaim R, Mangin G, Breuil MC, Chaussod R (2002) The argan tree (Argania spinosa) in Morocco Propagation by seeds, cuttings and in-vitro techniques. Agrofor Syst 54:71–81

    Article  Google Scholar 

  • Pakhou O, Medraoui L, Belkadi B, Rachidi F, Errahmani H, Alami M, Filali-Maltouf A (2020) Using two retrotransposon-based marker systems (SRAP and REMAP) for genetic diversity analysis of Moroccan Argan tree. Mol Biol Res Commun 9(3):93–103

    Google Scholar 

  • Pradeep M, Giridhar P (2016) Putrescine and polyamine inhibitors in culture medium alter in vitro rooting response of Decalepis hamiltonii Wight & Arn. Plant Cell Tissue Organ Cult 128:273–282

    Google Scholar 

  • Rosbakh S, Hülsmann L, Weinberger I, Bleicher M, Poschlod P (2019) Bleaching and cold stratification can break dormancy and improve seed germination in Cyperaceae. Aquat Bot 158:103128

    Article  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop. In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol 10. Springer, Berlin, pp 593–641

    Google Scholar 

  • Rugini E, Panelli G (1993) Olive (Olea europaea L.) biotechnology for short-term genetic improvement. Agro Food Ind Hi-Tech 4:3–5

    Google Scholar 

  • Rugini E, Luppino M, Agazio de M (1992) Endogenous polyamine and root morphogenesis variations under different treatments in cuttings and in in vitro explants of olive. Acta Hortic 300:225–232

    Article  Google Scholar 

  • Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: amaster regulator in plant root development. Plant Cell Rep 32:741–757

    Article  CAS  PubMed  Google Scholar 

  • Shahinozzaman M, Azad MAK, Amin MN (2012) In vitro clonal propagation of fast growing legume tree Acacia mangium Willd. employing cotyledonary node explants. Not Sci Biol 4:79–85

    Article  CAS  Google Scholar 

  • Shahinozzaman M, Ferdous MM, Faruq M, Azad M, Amin MN (2013) Micropropagation of black turmeric (Curcuma caesia Roxb.) through in vitro culture of rhizome bud explants. J Cent Eur Agric 14:110–115

    Article  Google Scholar 

  • Song Q, Cheng S, Chen Z, Nie G, Xu F, Zhang J, Zhou M, Zhang W, Liao Y, Ye J (2019) Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. BMC Plant Biol 19:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167

    Article  CAS  Google Scholar 

  • Taous F, Amenzou N, Marah H, Maia R, Maguas C, Bahmad L, Kelly S (2020) Stable isotope ratio analysis as a new tool to trace the geographical origin of Argan oils in Morocco. Forensic Chem 17:100198

    Article  Google Scholar 

  • Udomdee W, Wen PJ, Lee CY, Chin SW, Chen FC (2014) Effect of sucrose concentration and seed maturity on in vitro germination of Dendrobium nobile hybrids. Plant Growth Regul 72:249–255

    Article  CAS  Google Scholar 

  • Vudala SM, Ribas LLF (2017) Seed storage and asymbiotic germination of Hadrolaelia grandis (Orchidaceae). S Afr J Bot 108:1–7

    Article  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong R, Wang Y, Wu H, Ma Y, Jiang W, Ma X (2018) Seed treatments alleviate dormancy of field bindweed (Convolvulus arvensis L.). Weed Technol 32:564–569

    Article  Google Scholar 

  • Zhar N, Naamani K, Dihazi A, Jaiti F, El Keroumi A (2016) Comparative analysis of some biochemical parameters of argan pulp morphotypes (Argania spinosa (L.) Skeels) during maturity and according to the continentality in Essaouira region (Morocco). Physiol Mol Biol Plants 22:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Moroccan National Institute of Agronomic Research (INRA) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

IA, RA, GD and FG: planned the study, performed the experiments, interpreted data, corrected and revised the final version of the manuscript; IA: wrote the first draft of the manuscript; FG: performed statistical analyses; DI, ML RM, MAM and RM: assisted in selection and collection of argan material in the field, contributed in planning the study and by scientific advices, corrected and approved the final manuscript; MI: planned and supervised the work.

Corresponding author

Correspondence to Rabha Abdelwahd.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amghar, I., Diria, G., Boumlik, I. et al. An efficient regeneration pathway through adventitious organogenesis for the endangered Argania spinosa (L.) Skeels. Vegetos 34, 355–367 (2021). https://doi.org/10.1007/s42535-021-00208-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-021-00208-y

Keywords

Navigation