Skip to main content

Advertisement

Log in

Impact of shelterwood regeneration method on mechanical properties of scots pine wood

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Regeneration method effects within-stem variability of mechanical wood properties but has no impact on overall quality of Scots pine logs.

Abstract

In Central Europe, group shelterwood regeneration method relying on natural regeneration is generally considered as an approach that meets the criteria of close-to-nature silviculture. We tested its effect on wood properties in contrast to the clearcutting method with subsequent artificial regeneration by planting in the case of Scots pine (Pinus sylvestris L.). Four localities were chosen in the Czech Republic, where both regeneration methods were applied. Sample trees were felled and subsequently evaluated for the impact of the applied regeneration method on wood properties. Modulus of elasticity, bending strength and wood density were used as indicators of wood quality. The impact of the regeneration method on the examined characteristics of the wood was not statistically significant, 78 MPa (megapascal) for shelterwood and 75 MPa for clearcutting method in the case of bending strength, and they are of negligible importance in terms of influencing end-product potential. Much more significant was the impact of the applied regeneration method on the distribution of the properties along trunk radius, where the shelterwood method provides even distribution. Non-destructive methods turned out to be useful tools for elastic properties estimation of wood as the close correlation to modulus of elasticity was confirmed (r = 0.66 and r = 0.82 for shelterwood and clearcutting method, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Act No 289/1995 Coll., Forest Act, as amended (in Czech Zákon č. 289/1995 Sb. o lesích a o změně a doplnění některých zákonů), Prague, Ministry of Agriculture, Czech Republic.

  • Adams DL; Hodges JD; Loftis DL; Long, JN; Seymour RS; Helms JA. (1994) Silviculture Terminology with Appendix of Draft Ecosystem Management Terms. Silviculture Instructors Subgroup of the Silviculture Working Group of the Society of American Foresters. Available online: http://oak.snr.missouri.edu/silviculture/silviculture_terminology.htm (accessed on 15 August 2020).

  • Agestam E, Ekö PM, Johansson U (1998) Timber quality and volume growth in naturally regenerated and planted Scots pine stands in S.W. Sweden. Swedish Univ. of Agricultural Sciences, Uppsala

  • Aleinikovas M, Grigaliūnas J (2006) Differences of Pine (Pinus sylvestris L.) Wood Physical and Mechanical Properties from Different Forest Site Types in Lithuania. Bal For 12:9–13

    Google Scholar 

  • Auty D, Achim A (2008) The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry 81:475–487. https://doi.org/10.1093/forestry/cpn015

    Article  Google Scholar 

  • Auty D, Achim A, Macdonald E, Cameron AD, Gardiner BA (2016) Models for Predicting Clearwood Mechanical Properties of Scots Pine. For Sci 62:403–413. https://doi.org/10.5849/forsci.15-092

    Article  Google Scholar 

  • Axelsson EP, Lundmark T, Högberg P, Nordin A (2014) Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia. Forests 5:2106–2121

    Article  Google Scholar 

  • Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, USA

    Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. https://doi.org/10.1080/02827580903418224

    Article  Google Scholar 

  • Brang P, Spathelf P, Larsen JB, Bauhus J, Boncina A, Chauvin C, Drossler L, Garcia-Guemes C, Heiri C, Kerr G, Lexer MJ, Mason B, Mohren F, Muhlethaler U, Nocentini S, Svoboda M (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. https://doi.org/10.1093/forestry/cpu018

    Article  Google Scholar 

  • Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg P, Lutz JA (2013) Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and monitoring. For Ecol Manage 291:442–457. https://doi.org/10.1016/j.foreco.2012.11.007

    Article  Google Scholar 

  • ČSN 49 0108. Drevo. Zisťovanie hustoty [Wood. Determination of the density], Czech Standards Institute: Prague, Czech Republic, 1993

  • ČSN 49 0115. Drevo. Zisťovanie medze pevnosti v statickom ohybe [Wood. Determination of ultimate strength in flexure tests], Office for Standardization and Measurement: Prague, Czech Republic, 1979

  • ČSN 49 0116. Drevo. Metóda zisťovania modulu pružnosti pri statickom ohybe [Wood. Determination of the modulus of elasticity in static bending], Office for Standardization and Measurement: Prague, Czech Republic, 1982

  • Erefur Ch, Bergsten U, de Chantal M (2008) Establishment of direct seeded seedlings of Norway spruce and Scots pine: Effects of stand conditions, orientation and distance with respect to shelter tree, and fertilisation. For Ecol Manage 255:1186–1195

    Article  Google Scholar 

  • FAKOPP Ultrasonic Timer (2019) User’s guide. https:fakopp.com/docs/products/ultrasonic/UltrasonicGuide.pdf. Accessed 19 August 2019)

  • Gryc V, Vavrčík H, Horn K (2011) Density of juvenile and mature wood of selected coniferous species. J For Sci 57:123–130. https://doi.org/10.11118/actaun200452040059

    Article  Google Scholar 

  • Hassan KS, Horáček P, Tippner J (2013) Evaluation of stiffness and strength of scots pine wood using resonance frequency and ultrasonic techniques. BioRes. 8:1634–1645. https://doi.org/10.15376/biores.8.2.1634-1645

    Article  CAS  Google Scholar 

  • Hautamäki S, Kilpeläinen H, Verkasalo E (2014) Factors and models for bending properties of sawn timber from Finland and North-Western Russia. Part II Scots Pine Bal For 20:142–156

    Google Scholar 

  • Hlásny T, Holuša J, Štěpánek P, Turčáni M, Sitková Z, Zajíčková L (2011) Expected impacts of climate change on forests: Czech Republic as a case study. J For Sci 57:422–431. https://doi.org/10.17221/103/2010-JFS

    Article  Google Scholar 

  • Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J, Dobor L, Barcza Z, Konôpka B (2014) Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn Cas For J 60:5–18. https://doi.org/10.2478/forj-2014-0001

    Article  Google Scholar 

  • Horáček P, Tippner J, Hassan KS (2012) Nondestructive evaluation of static bending properties of scots pine wood using stress wave technique. Wood Res 57:359–366

    Google Scholar 

  • Ivković M, Gapare W, Wu H, Espinoza S, Rozenberg P (2013) Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Ann For Sci 70:525–534. https://doi.org/10.1007/s13595-013-0290-z

    Article  Google Scholar 

  • Jelonek T, Tomczak A, Jakubowski M, Pazdrowski W (2005) Properties of Scots pine (Pinus sylvestris L.) timber growing on former arable and forest land. Acta Sci Pol Silv Colendar Rat Ind Lignar 4:35–47

    Google Scholar 

  • Jiang ZH, Wang XQ, Fei BH, Ren HQ, Liu XE (2007) Effect of stand and tree attributes on growth and wood quality characteristics from a spacing trial with Populus xiaohei. Ann For Sci 64:807–814. https://doi.org/10.1051/forest:2007063

    Article  Google Scholar 

  • JR, Cown DJ (2017) Corewood (Juvenile Wood) and Its Impact on Wood Utilisation Cur For Rep 3:107–118. Doi: https://doi.org/10.1007/s40725-017-0055-2

  • Kask R (2015) The influence of growth conditions on physico-mechanical properties of Scots pine (Pinus sylvestris L.) wood in Estonia. Estonian University of Life Sciences

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Springer-Verlag, Berlin Heidelberg, Berlin, Germany

    Google Scholar 

  • Kurjatko S (2010) Vlastnosti dreva ako parametre jeho kvality [Wood properties as a parameters of its quality]. Parametre kvality dreva určujúce jeho finálne použitie [Wood quality parameters determining its end use], 1st edn. TU Zvolen, Slovakia, pp 11–23

    Google Scholar 

  • Macdonald E, Hubert J (2002) A review of the effects of silviculture on timber quality of Sitka spruce. Forestry 75:107–138. https://doi.org/10.1093/forestry/75.2.107

    Article  Google Scholar 

  • MACR (2016) Zpráva o stavu lesa a lesního hospodářství ČR v roce 2016 [Report on the State of Forest and Forestry in the Czech Republic 2016]. Ministry of Agriculture of the Czech Republic, Prague, p 443

    Google Scholar 

  • Makinen H, Hynynen J (2014) Wood density and tracheid properties of Scots pine: responses to repeated fertilization and timing of the first commercial thinning. Forestry 87:437–448. https://doi.org/10.1093/forestry/cpu004

    Article  Google Scholar 

  • Marcos JA, Marcos E, Taboada A, Tárrega R (2007) Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest. For Ecol Manage 247(1–3):35–42

    Article  Google Scholar 

  • Matías L, Jump AS (2012) Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: The case of Pinus sylvestris. For Ecol Manage 282:10–22

    Article  Google Scholar 

  • Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manage 339:22–33. https://doi.org/10.1016/j.foreco.2014.11.032

    Article  Google Scholar 

  • Moavenzadeh F, Cahn RW (1990) Concise encyclopedia of building & construction materials. Pergamon Press 1st edition, Michigan USA

  • Moore JR, Cown DJ (2017) Corewood (Juvenile Wood) and Its Impact on Wood Utilisation. Curr Forestry Rep 3:107. https://doi.org/10.1007/s40725-017-0055-2

    Article  Google Scholar 

  • Mörling T (2002) Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann For Sci 59:29–40. https://doi.org/10.1051/forest:2001003

    Article  Google Scholar 

  • Mörling T, Valinger E (199) Effects of Fertilization and Thinning on Heartwood Area, Sapwood Area and Growth in Scots Pine. Scan J For Res 14:462–469. Doi: https://doi.org/10.1080/02827589950154168

  • Nilsson U, Gemmel P, Johansson U, Karlsson M, Welander T (2002) Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. For Ecol Manage 161:133–145

    Article  Google Scholar 

  • Novák V (1970) Dřevařská technická příručka [Wood handbook]. Prague, Czech republic, Státní nakladatelství technické literatury

    Google Scholar 

  • Paluch JG, Bartkowicz LE (2004) Spatial interactions between Scots pine (Pinus sylvestris L.), common oak (Quercus robur L.) and silver birch (Betula pendula Roth.) as investigated in stratified stands in mesotrophic site conditions. For Ecol Manage 192:229–240

    Article  Google Scholar 

  • Peltola H, Kilpeläinen A, Sauvala K, Räisänen T, Ikonen VP (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn. https://doi.org/10.14214/sf.285

    Article  Google Scholar 

  • Požgaj A, Chovanec D, Kurjatko S, Babiak M (1993) Štruktúra a Vlastnosti Dreva [Structure and Properties of Wood], 1st edn. Príroda, Bratislava, Slovakia

    Google Scholar 

  • Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Skrzyszewski J, Sramek V, Sterba H, Svoboda M, Verheyen K, Zlatanov T, Bravo-Oviedo A (2016) Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manag 373:149–166. https://doi.org/10.1016/j.foreco.2016.04.043

    Article  Google Scholar 

  • Schönfelder O, Zeidler A, Borůvka V, Bílek L, Vítámvás J (2020) Effect of Shelterwood and Clear-Cutting Regeneration Method on Wood Density of Scots Pine. Forests 11(8):868. https://doi.org/10.3390/f11080868

    Article  Google Scholar 

  • Regulation No. 139/2004 Coll., on transfer rules of seeds and forest tree plants, on origin registration of reproduction material, and details on forest regeneration, and afforestation of land designated for forest functions (in Czech Vyhláška č. 139/2004, kterou se stanoví podrobnosti o přenosu semen a sazenic lesních dřevin, o evidenci o původu reprodukčního materiálu a podrobnosti o obnově lesních porostů a o zalesňování pozemků prohlášených za pozemky určené k plnění funkcí lesa), Prague, Ministry of Agriculture, Czech Republic.

  • Spathelf P, Bolte A, Maaten ECD (2015) Is Close-to-Nature Silviculture (CNS) an adequate concept to adapt forests to climate change? Landbauforschung Appl Agric Forestry Res 65:161–170. https://doi.org/10.3220/LBF1452526188000

    Article  Google Scholar 

  • Tomczak A, Jelonek T (2013) Radial variation in the wood properties of Scots pine (Pinus sylvestris L.) grown on former agricultural soil. For Res Pap 74:171–177. https://doi.org/10.2478/frp-2013-0017

    Article  Google Scholar 

  • Tsoumis GT (1991) Science and technology of wood – structure, properties, utilization. Verlag Kessel, Eifelweg, Germany

    Google Scholar 

  • Ulvcrona T, Ulvcrona KA (2011) The effects of pre-commercial thinning and fertilization on characteristics of juvenile clearwood of Scots pine (Pinus sylvestris L.). Forestry 84:207–219. https://doi.org/10.1093/forestry/cpr007

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bílek L, Simon J, Remeš J, Hůnová I, Král J, Putalová T, Mikeska M (2016) Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn 50:1–21. https://doi.org/10.14214/sf.1564

    Article  Google Scholar 

  • Vacek S, Vacek Z, Remeš J, Bílek L, Hůnová I, Bulušek D, Putalová T, Král J, Simon J (2017) Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees 31(5):1599–1617. https://doi.org/10.1007/s00468-017-1572-0

    Article  CAS  Google Scholar 

  • Viewegh J, Kusbach A, Mikeska M (2012) Czech forest ecosystem classification. J For Sci 49:74–82. https://doi.org/10.17221/4682-JFS

    Article  Google Scholar 

  • Vincent M, Krause C, Koubaa A (2011) Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning. Ann For Sci 68:1115–1125. https://doi.org/10.1007/s13595-011-0127-6

    Article  Google Scholar 

  • Wagenführ R (2000) Holzatlas, 5th edn. Fachbuchverlag, Leipzig, Germany

    Google Scholar 

  • Zobel BJ, Buijtenen JP (1989) Wood Variation: Its Causes and Control. Springer-Verlag, Berlin Heidelberg, Berlin, Germany

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Forests of the Czech Republic, state enterprise, and Municipal forests of Doksy for kindly providing us with the testing material.

Funding

The research was supported by the Ministry of Agriculture of the Czech Republic [project number QJ1520037 – „Increasing the adaptability of pine (Pinus sylvestris L.) silviculture in the conditions of the Czech Republic “] and by Internal Grant Agency of the Faculty of Forestry and Wood Sciences [A03/18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Zeidler.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6, 7, 8, 9, 10 and 11.

Table 6 Tests of significance for dynamic modulus of elasticity
Table 7 Duncan’s multiple range test for dynamic modulus of elasticity
Table 8 Tests of significance for static modulus of elasticity
Table 9 Duncan’s multiple range test for static modulus of elasticity
Table 10 Tests of significance for bending strength
Table 11 Duncan’s Multiple Range Test for Bending Strength

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidler, A., Borůvka, V., Bílek, L. et al. Impact of shelterwood regeneration method on mechanical properties of scots pine wood. Trees 35, 1185–1198 (2021). https://doi.org/10.1007/s00468-021-02107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02107-w

Keywords

Navigation