Skip to main content
Log in

Influence of cambial age and climate on ring width and wood density in Pinus radiata families

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

The correlation between tree ring width and density and short-term climate fluctuations may be a useful tool for predicting response of wood formation process to long-term climate change.

Aims

This study examined these correlations for different radiata pine genotypes and aimed at detecting potential genotype by climate interactions.

Methods

Four data sets comprising ring width and density of half- and full-sib radiata pine families were used. Correlations with climate variables were examined, after the extraction of the effect of cambial age.

Results

Cambial age explained the highest proportion of the ring to ring variation in all variables. Calendar year and year by family interaction explained a smaller but significant proportion of the variation. Rainfall had a positive correlation with ring width and, depending on test site, either a negative or positive correlation with ring density. Correlations between temperature during growing season and ring density were generally negative.

Conclusion

Climate variables that influence ring width and wood density can be identified from ring profiles, after removing the cambial age effect. Families can be selected that consistently show desirable response to climate features expected to become prevalent as a result of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apiolaza LA (2009) Modeling wood quality using random regression splines. Australasian Forest Genetics Conference. 20–22 April, Perth, Western Australia, Australia. http://apiolaza.net/publications.html Accessed 1 June 2012

  • Apiolaza LA, Garrick DJ (2001) Analysis of longitudinal data from progeny tests: some multivariate approaches. For Sci 47:129–140

    Google Scholar 

  • Battaglia M, Bruce J, Brack C, Baker T (2009) Climate change and Australia’s plantation estate: analysis of vulnerability and preliminary investigation of adaptation options. Forest & Wood Products Australia Ltd. Melbourne

  • Booth TH, Kirschbaum MUF, Battaglia M, Stokes C, Howden M (2010) Adapting agriculture to climate change: preparing Australian agriculture, forestry and fisheries for the future. CSIRO, Melbourne, pp 137–152

    Google Scholar 

  • Butler D, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. Release 3.00. Department of Primary Industries and Fisheries, Queensland

    Google Scholar 

  • Chen PY, Welsh C, Hamann A (2010) Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change. Glob Chang Biol 16:3374–3385

    Article  Google Scholar 

  • CSIRO (2001) Climate change projections for Australia. www.dar.csiro.au/publications/projections2001.pdf. Accessed 1 Sept 2010

  • Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of douglas-fir (Pseudotsuga menziesii (mirb.) franco) clones related to a heat and drought wave in France. For Ecol Manag 257:182–189

    Article  Google Scholar 

  • De Martonne E (1926) L’indice d’aridite. Comptes Rengues de l’Academie des Sciences, Paris

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria

  • Downes GM, Drew DM (2008) Climate and growth influences on wood formation and utilisation. South For 70:155–167

    Google Scholar 

  • Downes GM, Drew D, Battaglia M, Schulze D (2009) Measuring and modelling stem growth and wood formation: an overview. Dendrochronol 27:147–157

    Article  Google Scholar 

  • Evans R, Ilic J (2001) Rapid prediction of wood stiffness from microfibril angle and density. For Prod J 51:53–57

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York

    Google Scholar 

  • Fritts HC, Shashkin AS, Downes GM (1999) TreeRing 3: a simulation model of conifer ring growth and cell structure. In: Wimmer R, Vetter RE (eds) Tree ring analysis: biological, methodological and environmental aspects. CAB International, Wallingford, pp 3–32

    Google Scholar 

  • Gapare WJ, Wu HX, Abarquez A (2006) Genetic control in the time of transition from juvenile wood to mature wood in Pinus radiata D. Don. Ann For Sci 63:871–878

    Article  Google Scholar 

  • Gapare WJ, Ivković M, Dillon SK, Chen F, Evans R, Wu HX (2012) Genetic parameters and provenance variation of Pinus radiata D. Don. ‘Eldridge collection’ in Australia 2: wood properties. Tree Genet Genomes 8:895–910

    Article  Google Scholar 

  • Guller B, Isik K, Cetinay S (2012) Variations in the radial growth and wood density components in relation to cambial age in 30-year-old Pinus brutia Ten. at two test sites. Trees 26:975–986

    Article  Google Scholar 

  • Harrell FE (2001) Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. Springer, Heidelberg, Springer Series in Statistics

    Google Scholar 

  • Inc RI (2001) WinDendro and WinCell user manuals. Regent Instruments Inc., Québec

    Google Scholar 

  • Ivković M, Rozenberg P (2004) Description and modelling of within-ring wood density in clones of three coniferous species. Ann For Sci 61:759–769

    Article  Google Scholar 

  • Ivković M, Gapare WJ, Abarquez A, Ilic J, Powell MB, Wu HX (2009) Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci Tech 43:237–257

    Article  Google Scholar 

  • Li L, Wu HX (2005) Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can J For Res 35:2019–2029

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger R (1996) SAS system for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Martinez-Meier A et al (2008) Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France. Ann For Sci 65:102

    Article  Google Scholar 

  • Martinez-Meier A, Sanchez L, Dalla-Salda G, Gallo L, Pastorino M, Rozenberg P (2009) Ring density record of phenotypic plasticity and adaptation to drought in Douglas-fir. For Ecol Manag 258:860–867

    Article  Google Scholar 

  • McLane SC, LeMay VM, Aitken SN (2011) Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions. Ecol Appl 21:776–788

    Article  PubMed  Google Scholar 

  • Peltola H, Gort J, Pulkkinen P, Gerendiain AZ, Karppinen J, Ikonen VP (2009) Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn 43:339–354

    Google Scholar 

  • Rozenberg P, Franc A, Bastien C (2001) Improving models of wood density by including genetic effects: a case study in Douglas-fir. Ann For Sci 58:385–394

    Article  Google Scholar 

  • Rozenberg P, Schüte G, Ivkovich M, Bastien C, Bastien JC (2004) Clonal variation of indirect cambium reaction to within-growing season temperature changes in Douglas-fir. For (Oxford) 77:257–268

    Google Scholar 

  • Verbyla AP, Cullis BR, Kenward MG, Welham SJ (1999) The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion). App Stat 48:269–311

    Google Scholar 

Download references

Acknowledgments

Thanks to Li Li and Aljoy Abarquez who processed samples and produced data sets used in this study. Thanks also to Leopoldo Sanchez, Jean-Charles Bastien, Luc Paques and Frederic Millier of INRA, Orléans, France for their time spent in discussions with the senior author. Data sets used in this study originate from two projects funded by Forest and Wood Products Australia. The senior author’s visit to INRA, France and this research were funded by the 2010 Fellowship from J.W. Gottstein Memorial Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Ivković.

Additional information

Handling Editor: Gilbert Aussenac

Contribution of co-authors Dr. Gapare contributed data and ideas, and reviewed the final manuscript.

Dr Wu organised the sampling of field trials, contributed data and reviewed the final manuscript.

Mr Espinoza contributed ideas and commented on methodology and earlier drafts of the manuscript.

Dr Rozenberg contributed to data analyses (R functions) and ideas that initiated this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivković, M., Gapare, W., Wu, H. et al. Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Annals of Forest Science 70, 525–534 (2013). https://doi.org/10.1007/s13595-013-0290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-013-0290-z

Keywords

Navigation