Skip to main content

Advertisement

Log in

Does elevated air humidity modify hydraulically relevant anatomical traits of wood in Betula pendula?

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The xylem anatomical structure of Betula pendula is conservative regarding changes in atmospheric humidity, but it is plastic along the vertical canopy profile to optimise water supply among different foliage layers.

We studied responses of wood anatomical traits in silver birch (Betula pendula) to artificially elevated air humidity to simulate a climate trend predicted for northern latitudes. The study was performed on saplings growing at Free Air Humidity Manipulation (FAHM) site, eastern Estonia, with the long-term mean relative air humidity (RH) increased by 7% over the ambient level. The humidification treatment did not significantly affect xylem traits or specific hydraulic conductivity, confirming a conservative nature of the wood anatomical structure with respect to air humidity. Only wood density decreased in response to elevated RH. The reduced atmospheric evaporative demand had a weak effect on the development of the plant water-conducting system in moderately humid climates in the northern temperate zone under conditions of ample soil water availability. The wood anatomical traits of both branches and main stems varied substantially with canopy position, with larger height effects in main stems. In main stems, vessel hydraulic diameter and theoretical (kt) and specific conductivities (ks) of the xylem decreased in the apical direction. In contrast, upper-crown branches had wider vessels and a bigger vessel relative area that resulted in kt and ks both increasing from the crown base upward. Vessel size and xylem hydraulic efficiency were positively associated with radial growth rate of stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloni R (2015) Ecophysiological implications of vascular differentiation and plant evolution. Trees 29:1–16

    Article  Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis. Differentiation 24:203–208

    Article  Google Scholar 

  • Anderson G, Bancroft J (2002) Tissue processing and microtomy including frozen. In: Bancroft J, Gamble JD (eds) Theory and practice of histological techniques. Churchill Livingstone, London, pp 87–107

    Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845

    Article  CAS  Google Scholar 

  • Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J 34:352–364

    Article  Google Scholar 

  • Arbellay E, Fonti P, Stoffel M (2012) Duration and extension of anatomical changes in wood structure after cambial injury. J Exp Bot 63:3271–3277

    Article  CAS  Google Scholar 

  • Bettiati D, Petit G, Anfodillo T (2012) Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiol 32:171–177

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Gutierrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25:1435–1444

    Article  Google Scholar 

  • Cai J, Zhang S, Tyree MT (2010) A computational algorithm addressing how vessel length might depend on vessel diameter. Plant Cell Environ 33:1234–1238

    Article  Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin

    Book  Google Scholar 

  • Carrer M, von Arx G, Castagneri D, Petit G (2015) Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol 35:27–33

    Article  CAS  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  Google Scholar 

  • Choat B, Sack L, Holbrook NM (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol 175:686–698

    Article  Google Scholar 

  • Cochard H (2006) Cavitation in trees. C R Phys 7:1018–1026

    Article  CAS  Google Scholar 

  • Coomes DA, Heathcote S, Godfrey ER, Shepherd JJ, Sack L (2008) Scaling of xylem vessels and veins within the leaves of oak species. Biol Lett 4:302–306

    Article  Google Scholar 

  • Creese C, Benscoter AM, Maherali H (2011) Xylem function and climate adaptation in Pinus. Am J Bot 98:1437–1445

    Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22:643–655

    Article  Google Scholar 

  • Fan ZX, Cao KF, Becker P (2009) Axial and radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China. IAWA J 30:1–13

    Article  CAS  Google Scholar 

  • Fan ZX, Zhang SB, Hao GY, Ferry Slik JW, Cao KF (2012) Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J Ecol 100:732–741

    Article  Google Scholar 

  • Fernandez ME, Gyenge JE, de Urquiza MM, Varela S (2012) Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels. Forest Syst 21:162–173

    Article  Google Scholar 

  • Fichot R, Laurans F, Monclus R, Moreau A, Pilate G, Brignolas F (2009) Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides × Populus nigra hybrids. Tree Physiol 29:1537–1549

    Article  Google Scholar 

  • Goulet J, Messier C, Nikinmaa E (2000) Effect of branch position and light availability on shoot growth of understory sugar maple and yellow birch saplings. Can J Bot 78:1077–1085

    Google Scholar 

  • Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B (2014) Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiol 34:744–756

    Article  Google Scholar 

  • Hietz H, Rosner S, Hietz-Seifert U, Wright J (2017) Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol 213:170–180

    Article  CAS  Google Scholar 

  • Hoeber S, Leuschnera C, Köhler L, Arias-Aguilar D, Schuldt B (2014) The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate. For Ecol Manage 330:126–136

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Islam M, Rahman M, Bräuning A (2018) Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Front Plant Sci 9:1761. https://doi.org/10.3389/fpls.2018.01761

    Article  PubMed  PubMed Central  Google Scholar 

  • Jasińska AK, Alber M, Tullus A, Rahi M, Sellin A (2015) Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Funct Plant Biol 42:565–578

    Article  Google Scholar 

  • Kotowska MM, Hertel D, Rajab YA, Barus H, Schuldt B (2015) Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Front Plant Sci 6:191. https://doi.org/10.3389/fpls.2015.00191

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupper P, Sõber J, Sellin A, Lõhmus K, Tullus A, Räim O, Lubenets K, Tulva I, Uri V, Zobel M, Kull O, Sõber A (2011) An experimental facility for free air humidity manipulation (FAHM) can alter water flux hrough deciduous tree canopy. Environ Exp Bot 72:432–438

    Article  Google Scholar 

  • Lewis AM, Boose ER (1995) Estimating volume flow rates through xylem conduits. Am J Bot 82:1112–1116

    Article  Google Scholar 

  • Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT (2018) Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ 4:646–660

    Article  Google Scholar 

  • Liu H, Gleason SM, Hao G, Hua L, He P, Goldstein G, Ye Q (2019) Hydraulic traits are coordinated with maximum plant height at the global scale. Sci Adv 5(2):eaav1332. https://doi.org/10.1126/sciadv.aav1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Loepfe L, Vilalta-Martinez J, Pinol J, Mencuccini M (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theor Biol 247:788–803

    Article  Google Scholar 

  • Longui EL, Romeiro D, Testoni LN, de Aguiar OT, Filho RC, de Lima IL, Florsheim SMB (2012) Water deficit affects wood vessels of Croton floribundus Spreng. in different vegetation types, São Paulo State, Brazil. Hoehnea 39:113–123

    Article  Google Scholar 

  • López-Bernal Á, Alcántara E, Testi L, Villalobos JF (2010) Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. Tree Physiol 30:1536–1544

    Article  Google Scholar 

  • Martıńez-Cabrera HI, Schenk HJ, Cevallos-Ferriz RS, Jones CS (2011) Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. Am J Bot 98:915–922

    Article  Google Scholar 

  • Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot 96:1388–1398

    Article  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch B, Dome JC (2012) Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant Cell Environ 35:116–125

    Article  Google Scholar 

  • Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM (2010) The blindmen and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164:287–296

    Article  Google Scholar 

  • Mencuccini M, Höltta T, Petit G, Magnani F (2007) Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett 10:1084–1093

    Article  Google Scholar 

  • Nardini A, Dimasi F, Klepsch M, Jansen S (2012) Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiol 32:1434–1441

    Article  CAS  Google Scholar 

  • Nijsse J, Van der Heijden GWAM, Van Ieperen W, Keijzer CJ, Van Meeteren U (2001) Xylem hydraulic conductivity related to conduit dimensions along chrysanthemum stems. J Exp Bot 52:319–327

    Article  CAS  Google Scholar 

  • Oksanen E, Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sellin A, Sõber A (2019) Northern forest trees under increasing atmospheric humidity. In: Matyssek R, Lüttge U, Ramos FMC (eds) Progress in botany, vol 80. Springer, Berlin, pp 317–336. https://doi.org/10.1007/124_2017_15

    Chapter  Google Scholar 

  • Oladi R, Bräuning A, Pourtahmasi K (2014) ‘‘Plastic’’ and ‘‘static’’ behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees 28:493–502

    Article  Google Scholar 

  • Olson ME, Rosell JA (2013) Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol 197:1204–1213

    Article  Google Scholar 

  • Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I (2016) Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol 209:521–530

    Article  Google Scholar 

  • Petit G, Anfodillo T (2009) Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theor Biol 259:1–4

    Article  Google Scholar 

  • Petit G, Crivellaro A (2014) Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 28:915–921

    Article  Google Scholar 

  • Petit G, Anfodillo T, De Zan C (2009) Degree of tapering of xylem conduits in stems and roots of small Pinus cembra and Larix decidua trees. Botany 87:501–508

    Article  Google Scholar 

  • Petit G, Pfautsch S, Anfodillo T, Adams MA (2010) The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytol 187:1146–1153

    Article  Google Scholar 

  • Petit G, Savi T, Consolini M, Anfodillo T, Nardini A (2016) Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiol 36:1310–1319

    PubMed  Google Scholar 

  • Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA (2016) Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19:240–248

    Article  Google Scholar 

  • Pichard WP, Melcher PJ (2005) Perspectives on the biophysics of xylem transport. In: Holbrook NM, Zwieniecki MA (eds) Vascular Transport in Plants. Elsevier Academic Press, Amsterdam, pp 3–18

    Chapter  Google Scholar 

  • Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  Google Scholar 

  • Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D (2018) Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol 218:1015–1024

    Article  Google Scholar 

  • Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen J (2013) The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol 33:684–694

    Article  Google Scholar 

  • Schuldt B, Leuschner C, Brock N, Horna V (2013) Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiol 33:161–174

    Article  Google Scholar 

  • Sellin A, Kupper P (2005) Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch. Oecologia 142:388–397

    Article  Google Scholar 

  • Sellin A, Lubenets K (2010) Variation of transpiration within a canopy of silver birch: effect of canopy position and daily versus nightly water loss. Ecohydrology 3:467–477

    Article  Google Scholar 

  • Sellin A, Rohejärv A, Rahi M (2008) Distribution of vessel size, vessel density and xylem conducting efficiency within a crown of silver birch (Betula pendula). Trees 22:205–216

    Article  CAS  Google Scholar 

  • Sellin A, Eensalu E, Niglas A (2010a) Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula. Ecol Res 25:173–183

    Article  Google Scholar 

  • Sellin A, Õunapuu E, Karusion A (2010b) Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. Tree Physiol 30:1528–1535

    Article  Google Scholar 

  • Sellin A, Tullus A, Niglas A, Õunapuu E, Karusion A, Lõhmus K (2013) Humidity-driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (Betula pendula). Ecol Res 28:523–535

    Article  CAS  Google Scholar 

  • Sellin A, Rosenvald K, Õunapuu-Pikas E, Tullus A, Ostonen I, Lõhmus K (2015) Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Front Plant Sci 6:860. https://doi.org/10.3389/fpls.2015.00860

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellin A, Alber M, Keinänen M, Kupper P, Lihavainen J, Lõhmus K, Oksanen E, Sõber A, Sõber J, Tullus A (2017a) Growth of northern deciduous trees under increasing atmospheric humidity: possible mechanisms behind the growth retardation. Reg Environ Chang 17:135–2148

    Article  Google Scholar 

  • Sellin A, Alber M, Kupper P (2017b) Increasing air humidity influences hydraulic efficiency but not functional vulnerability of xylem in hybrid aspen. J Plant Physiol 219:28–36

    Article  CAS  Google Scholar 

  • Sellin A, Taneda H, Alber M (2019) Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula). J Plant Res 132:369–381

    Article  CAS  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Wheeler JK (2005) Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ 28:456–465

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Article  Google Scholar 

  • Zhang SB, Cao KF, Fan ZX, Zhang JL (2013) Potential hydraulic efficiency in angiosperm trees increases with growth-site temperature but has no trade-off with mechanical strength. Glob Ecol Biogeogr 22:971–981

    Article  Google Scholar 

  • Zhao X (2016) Spatial variation of vessel grouping in the xylem of Betula platyphylla Roth. J Plant Res 129:29–37

    Article  Google Scholar 

  • Zhu SD, Song JJ, Li RH, Ye Q (2013) Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ 36:879–891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Estonian Ministry of Education and Research (institutional research project IUT34-9). We are grateful to Dr. Ants Kaasik for his assistance with statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeli Alber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alber, M., Petit, G. & Sellin, A. Does elevated air humidity modify hydraulically relevant anatomical traits of wood in Betula pendula?. Trees 33, 1361–1371 (2019). https://doi.org/10.1007/s00468-019-01863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01863-0

Keywords

Navigation