Skip to main content
Log in

Ecophysiological implications of vascular differentiation and plant evolution

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Environmental cues regulate plant vascular differentiation and plant evolution through simple hormonal mechanisms of a single or a few moving signals.

Abstract

Mechanisms regulating the responses of plants and their vascular tissues to environmental stimuli are mediated by continuously moving hormonal signals that enable continuous response to ecological cues. Auxin from young leaves is the primary hormonal signal that can induce vascular differentiation by itself. Its concentrations determine whether phloem or xylem is induced. Auxin produced in a parasitic plant induces continuous vessel system into its host with open perforation at their junction. Polar auxin gradients along trees regulate the gradual widening of vessel diameter and decrease in vessel density from leaves to roots. This basic mechanism also regulates vascular adaptation to the plant’s environment. Gibberellin from mature leaves, in the presence of auxin, promotes cambial activity and woodiness, and is the specific signal inducing fibers. The evolutionary development of vessels and fibers from tracheids reflects their hormonal specialization; from the combined mechanism of auxin and gibberellin for tracheids in gymnosperms, to the specialized mechanisms of auxin inducing vessels, and gibberellin inducing fibers in angiosperms. Cytokinin from root tips promotes cambial activity and sensitivity enabling the extreme differentiation of ring-porous wood in temperate deciduous hardwood trees. These mechanisms are discussed for clarifying the role of the environment in vascular adaption and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R (1979) Role of auxin and gibberellin in differentiation of primary phloem fibers. Plant Physiol 63:609–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R (1980) Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150:255–263

    CAS  PubMed  Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Google Scholar 

  • Aloni R (1991) Wood formation in deciduous hardwood trees. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 175–197

    Google Scholar 

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 531–546

    Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation—hypotheses and evidence. J Plant Growth Regul 20:22–34

    CAS  Google Scholar 

  • Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!. Kluwer Academic Publishers, Dordrecht, pp 485–506

    Google Scholar 

  • Aloni R (2013a) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin, pp 99–139

    Google Scholar 

  • Aloni R (2013b) Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238:819–830

    CAS  PubMed  Google Scholar 

  • Aloni R, Barnett JR (1996) The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia. Planta 198:595–603

    CAS  Google Scholar 

  • Aloni R, Griffith M (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184:123–129

    CAS  PubMed  Google Scholar 

  • Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182:583–590

    CAS  PubMed  Google Scholar 

  • Aloni R, Peterson CA (1997) Auxin promotes dormancy callose removal from the phloem of Magnolia kobus and callose accumulation and earlywood vessel differentiation in Quercus robur. J Plant Res 110:37–44

    CAS  Google Scholar 

  • Aloni R, Sachs T (1973) The three-dimensional structure of primary phloem systems. Planta 113:343–353

    Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis - a new hypothesis. Differentiation 24:203–208

    Google Scholar 

  • Aloni R, Baum SF, Peterson CA (1990a) The role of cytokinin in sieve tube regeneration and callose production in wounded Coleus internodes. Plant Physiol 93:982–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R, Tollier T, Monties B (1990b) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol 94:1743–1747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R, Alexander JD, Tyree MT (1997) Natural and experimentally altered hydraulic architecture of branch junctions in Acer saccharum Marsh. and Quercus velutina Lam. trees. Trees 11:255–264

    Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117:841–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R, Feigenbaum P, Kalev N, Rozovsky S (2000) Hormonal control of vascular differentiation in plants: the physiological basis of cambium ontogeny and xylem evolution. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 223–236

    Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    CAS  PubMed  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    CAS  PubMed  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006a) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006b) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    CAS  PubMed  Google Scholar 

  • Aloni R, Foster A, Mattsson J (2013) Transfusion tracheids in the conifer leaves of Thuja plicata (Cupressaceae) are derived from parenchyma and their differentiation is induced by auxin. Am J Bot 100:1949–1956

    PubMed  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    CAS  PubMed  Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    CAS  PubMed  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    PubMed  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    CAS  PubMed  Google Scholar 

  • Bradford KJ, Trewavas AJ (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol 105:1029–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley MV, Crane JC (1957) Gibberellin-stimulated cambial activity in stems of apricot spur shoots. Science 136:973–974

    Google Scholar 

  • Cai J, Tyree MT (2014) Measuring vessel length in vascular plants: can we divine the truth? History, theory, methods, and contrasting models. Trees 28:643–655

  • Caño-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637

    PubMed  Google Scholar 

  • Carlquist S (2013) More woodiness/less woodiness: evolutionary avenues, ontogenetic mechanisms. Int J Plant Sci 174:964–991

    Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin–cytokinin interactions in higher plants: old problems and new tools. Trends in Plant Sci 2:351–356

    CAS  Google Scholar 

  • Cuny HE, Rathgeber CB, Frank D, Fonti P, Fournier M (2014) kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241

  • Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    CAS  PubMed  Google Scholar 

  • Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24:66–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    CAS  PubMed  Google Scholar 

  • Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin–cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and special expression of gibberellin 20-oxidase isolated from hybrid aspen (Populus termulata × P. termuloides Michx.). Planta 214:920–930

    CAS  PubMed  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    CAS  PubMed  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy, meristems, cells, and tissues of the plant body—their structure, function, and development. Wiley, Hoboken

    Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570

    PubMed  Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235

    CAS  PubMed  Google Scholar 

  • Furuta KM, Hellmann E, Helariutta Y (2014) Molecular control of cell specification and cell differentiation during procambial development. Annu Rev Plant Biol 65:604–638

    Google Scholar 

  • Gessler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24:1313–1321

    CAS  PubMed  Google Scholar 

  • Hess T, Sachs T (1972) The influence of a mature leaf on xylem differentiation. New Phytol 71:903–914

    Google Scholar 

  • Hou H-W, Zhou Y-T, Mwange K-N, Li W-F, He X-Q, Cui K-M (2006) ABP1 expression regulated by IAA and ABA is associated with the cambium periodicity in Eucommia ulmoides Oliv. J Exp Bot 57:3857–3867

    CAS  PubMed  Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    CAS  PubMed  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    CAS  PubMed  Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309

    CAS  Google Scholar 

  • Kalev N, Aloni R (1998) Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea L. seedlings. New Phytol 138:461–468

    CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, Luschnig C, Govaerts W, Hell SW, Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540

    PubMed Central  PubMed  Google Scholar 

  • Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA 111:7150–7155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kudo K, Nabeshima E, Begum S, Yamagishi Y, Nakaba S, Oribe Y, Yasue K, Funada R (2014) The effects of localized heating and disbudding on cambial reactivation and formation of earlywood vessels in seedlings of the deciduous ring-porous hardwood, Quercus serrata. Ann Bot 113:1021–1027

    PubMed  Google Scholar 

  • Lechowicz MJ (1984) Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Am Nat 124:821–842

    Google Scholar 

  • Leitch MA (2001) Vessel-element dimensions and frequency within the most current growth increment along the length of Eucalyptus globules stems. Trees 15:353–357

    Google Scholar 

  • Li S, Pezeshki SR, Shields FD (2006) Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J Plant Physiol 163:619–628

    CAS  PubMed  Google Scholar 

  • Lilley JL, Gee CW, Sairanen I, Ljung K, Nemhauser JL (2012) An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiol 160:2261–2270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liphschitz N (1995) Ecological wood anatomy: changes in xylem structure in Israeli trees. In: Shuming W (ed) Wood anatomy research 1995. Proc Inter Symp Tree Anatomy and Wood Formation. Tianjin, China. International Academic Publishers, Beijing, pp 12–15

  • Love J, Björklunda S, Vahalab J, Hertzbergc M, Kangasjärvib J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388

    CAS  PubMed  Google Scholar 

  • Luxová M (1986) The hydraulic safety zone at the base of barley roots. Planta 169:465–470

    PubMed  Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazur E, Kurczyńska EU, Friml J (2014) Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. Protoplasma 251:1125–1139

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    CAS  PubMed  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    CAS  PubMed  Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oda Y, Fukuda H (2012) Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol 15:38–44

    CAS  PubMed  Google Scholar 

  • Olson ME, Rosell JA (2013) Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol 197:1204–1213

    PubMed  Google Scholar 

  • Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M (2014) Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 17:988–997

  • Palni LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    CAS  PubMed  Google Scholar 

  • Pěnčík A, Simonovik B, Petersson SV, Henyková E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazímalová E, Novák O, Sandberg G, Ljung K (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25:3858–3870

    PubMed Central  PubMed  Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    CAS  PubMed  Google Scholar 

  • Pesquet E, Zhang B, Gorzsas A, Puhakainen T, Serk H, Escamez S, Barbier O, Gerber L, Courtois-Moreau C, Alatalo E, Paulin L, Kangasjarvi J, Sundberg B, Goffner D, Tuominen H (2013) Noncell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell 25:1314–1328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petit G, Crivellaro A (2014) Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 28:915–921

    Google Scholar 

  • Priestley JH, Scott LI (1936) A note upon summer wood production in the tree. Proc Leeds Philos Soc 3:235–248

    Google Scholar 

  • Prior LD, Bowman DMJS (2014) Across a macro-ecological gradient forest competition is strongest at the most productive sites. Front Plant Sci 5:260

  • Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rathgeber CB, Rossi S, Bontemps JD (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438

    PubMed Central  PubMed  Google Scholar 

  • Raven JA (2003) Long-distance transport of non-vascular plants. Plant Cell Environ 26:73–85

    Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of Plants, 7th edn. Freeman, New York

    Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    CAS  PubMed  Google Scholar 

  • Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247

  • Roberts LW, Gahan BP, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin

    Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Sachs T (ed) (1991) The polarization of tissues. Pattern formation in plant tissues. Cambridge University Press, Cambridge, pp 52–69

    Google Scholar 

  • Sachs T (2000) Integrating cellular and organismal aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    CAS  PubMed  Google Scholar 

  • Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907–4916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    CAS  PubMed  Google Scholar 

  • Saks Y, Feigenbaum P, Aloni R (1984) Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol 76:638–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91:221–265

    CAS  PubMed  Google Scholar 

  • Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77:577–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz K (1990) Algae. In: Behnke HD, Sjolund RD (eds) Sieve elements, comparative structure, induction and development. Springer, Berlin, pp 1–18

    Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennet M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissue of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11(1):e1001474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L (2013) Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25:3988–3999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorce C, Giovannelli A, Sebastiani L, Anfodillo T (2013) Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep 32:885–898

    CAS  PubMed  Google Scholar 

  • Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer, Sunderland

    Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    CAS  PubMed  Google Scholar 

  • Tokunaga N, Uchimura N, Sato Y (2006) Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma 228:179–187

    CAS  PubMed  Google Scholar 

  • Trewavas AJ (1983) Is plant development regulated by changes in concentration of growth substances or by changes in the sensitivity to growth substances? TIBS 8:354–357

    CAS  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin

    Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ursache R, Nieminen K, Helariutta Y (2013) Genetic and hormonal regulation of cambial development. Physiol Plant 147:36–45

    CAS  PubMed  Google Scholar 

  • Wareing PF (1958) Interaction between IAA and GA in cambial activity. Nature 181:1744–1745

    CAS  PubMed  Google Scholar 

  • Wheeler EA, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull 12:275–332

    Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343:1505–1508

    CAS  PubMed  Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    CAS  Google Scholar 

  • Zhang J, Nieminen K, Serra JA, Helariutta Y (2014) The formation of wood and its control. Curr Opin Plant Biol 17:56–63

    CAS  PubMed  Google Scholar 

  • Zhao X (2014) Effects of cambial age and flow path-length on vessel characteristics in birch. J For Res (in press)

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

Download references

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Aloni.

Additional information

Communicated by U. Luettge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees 29, 1–16 (2015). https://doi.org/10.1007/s00468-014-1070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1070-6

Keywords

Navigation