Impact of the laurina mutation in Coffea arabica L. on semi-dwarfism, cell number and hormonal profiles in hypocotyls of seedlings growing under daylight

Abstract

Key message

Hypocotyl semi-dwarfism in BP was only due to less cell number. Daylight was required to inhibit cell division in the mutant. ABA, IAA and cytokinins would be involved.

Abstract

Coffea arabica ‘Laurina’ is a natural mutant of Coffea arabica ‘Bourbon’ (B) and is known under the trade name ‘Bourbon Pointu’ (BP). Under daylight, the laurina mutation leads to pleiotropic effects, including semi-dwarf hypocotyls. At the opposite, semi-dwarfism of BP seedlings disappeared under darkness conditions. The first step was to describe the morphological impact of the mutation in seedlings growing under daylight by comparison with seedlings growing under darkness. As the hypocotyl length was mainly affected, the second step was to investigate histological modifications in the organ comparing B and BP seedlings growing under daylight. Result of this investigation indicated that the mutation does not impact on cell length. Moreover, cytometry analyses showed absence of endoreduplication. Actually, the mutation influenced the cell number and this effect appeared before the 40th day after sowing. The length difference of hypocotyls between B and BP was due to lower cell number in BP, indicating possible involvement of phytohormones. Investigations showed the decrease of cytokinin and auxin levels in BP compared to B, while the cytokinin/auxin ratio remained constant in both varieties. By contrast, abscisic acid content increased in BP. Concurrently these results indicate the lowering of cell division, due to the mutation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adler S, Verdeil JL, Lartaud M, Fock-Bastide I, Joët T, Conéjéro G, Noirot M (2014) Morphological and histological impacts of the laurina mutation on fructification and seed characteristics in Coffea arabica L. Trees 28:585–595

    Article  Google Scholar 

  2. Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Pl J 8:653–658

    CAS  Article  Google Scholar 

  3. Baker DB, Ray PM (1965) Relation between effects of auxin on cell wall synthesis and cell elongation. Pl Physiol 40:360–368

    CAS  Article  Google Scholar 

  4. Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot control zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Pl J 11:339–345

    CAS  Article  Google Scholar 

  5. Boylan MT, Quail PH (1991) Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Nat Acad Sci 88:10806–10810

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Burg SP, Burg EA (1967) Inhibition of polar auxin transport by ethylene. Pl Physiol 42:1224–1228

    CAS  Article  Google Scholar 

  7. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 212:673–683

    CAS  PubMed  Article  Google Scholar 

  8. Charrier A, Berthaud J (1975) Variation de la teneur en caféine dans le genre Coffea. Café Cacao Thé 19:251–264

    CAS  Google Scholar 

  9. Chen CM, Kristopeit SM (1981) Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenine nucleosidase from wheat germ cells. Pl Physiol 68:1020–1023

    CAS  Article  Google Scholar 

  10. Chevalier A (1947) Les caféiers du globe: III. Systématique des caféiers et faux-caféiers maladies et insectes nuisibles, Lechevallier

    Google Scholar 

  11. Cowling RC, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 50:1351–1357

    CAS  Article  Google Scholar 

  12. Cummins WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99:347–351

    CAS  PubMed  Article  Google Scholar 

  13. Da Silva EAA, Toorop PE, Nijsse J, Bewley JD, Hilhorst HWM (2005) Exogenous gibberellins inhibit coffee (Coffea arabica cv Rubi) seed germination and cause cell death in the embryo. J Exp Bot 56:1029–1038

    PubMed  Article  Google Scholar 

  14. Da Silva EAA, Toorop PE, Van Lammeren AAM, Hilhorst HWM (2008) ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Ann Bot 102:425–433

    PubMed Central  PubMed  Article  Google Scholar 

  15. Dolezel J, Binarova J, Lucretti S (1989) Analysis of nuclear DNA content in plant cell by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  16. Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, Galuszka P, Kima P, Gaudinova A, Zizkova E, Hanus J, Dancak M, Travnicek B, Pesek B, Krupicka M, Vankova R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    CAS  PubMed  Article  Google Scholar 

  17. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    CAS  PubMed  Article  Google Scholar 

  18. Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hofte H (1997) Cellular basis of hypocotyl growth in Arabidopsis. Pl Physiol 114:295–305

    CAS  Article  Google Scholar 

  19. Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Pl Physiol 99:1156–1161

    CAS  Article  Google Scholar 

  20. Kawamura H, Kamisaka S, Masuda Y (1976) Regulation of lettuce hypocotyl elongation by gibberellic acid. Correlation between cell elongation, stress-relaxation properties of the cell wall and wall polysaccharide content. Pl Cell Physiol 17:23–24

    CAS  Google Scholar 

  21. Krug CA, Carvalho A, Antunes Filho H (1954) Genetica de Coffea. XXI. Hereditariedade dos caracteriscos de Coffea arabica L. var laurina (Smeathman) DC. Bragantia 13:247–255

    Article  Google Scholar 

  22. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J integr Pl Biol 52:53–60

    CAS  Article  Google Scholar 

  23. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    CAS  PubMed  Article  Google Scholar 

  24. Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    CAS  PubMed  Article  Google Scholar 

  25. Lecolier A, Besse P, Charrier A, Tchakaloff TN, Noirot M (2009a) Unraveling the origin of Coffea arabica ‘Bourbon pointu’ from La Réunion: a historical and scientific perspective. Euphytica 168:1–10

    CAS  Article  Google Scholar 

  26. Lecolier A, Verdeil JL, Escoute J, Chrestin H, Noirot M (2009b) Laurina mutation affected Coffea arabica tree size and shape mainly through internode dwarfism. Trees 23:1043–1051

    Article  Google Scholar 

  27. Lecolier A, Noirot M, Escoute J, Chrestin H, Verdeil JL (2009c) Early effects of the mutation laurina on the shoot apex functioning of coffee tree and analysis of the plastochron phases: relationships with the dwarfism of leaves. Trees 23:673–682

    Article  Google Scholar 

  28. Lulsdorf MM, Ying Yuan H, Slater SMH, Vandenberg A, Han X, Zaharia LI, Abrams SR (2013) Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Pl Growth Regul 71:191–198

    CAS  Article  Google Scholar 

  29. MacDougal DT (1903) The influence of light and darkness on growth and development. Mem New York Bot Garden 2:1–319

    Google Scholar 

  30. Masuda Y (1990) Auxin-induced cell elongation and cell wall changes. Bot Magaz, Tokyo 103:345–370

    CAS  Article  Google Scholar 

  31. McGaw BA, Horgan R, Heald JK (1985) Cytokinin metabolism and the modulation of cytokinin activity in radish. Phytochem 24:9–13

    CAS  Article  Google Scholar 

  32. Meyer Y, Cooke R (1979) Time course of hormonal control of the first mitosis in tobacco mesophyll protoplasts cultivated in vitro. Planta 147:181–185

    CAS  PubMed  Article  Google Scholar 

  33. Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    CAS  Article  Google Scholar 

  34. Mok MC, Mok DWS, Armstrong DJ (1978) Differential cytokinin structure-activity relationship in Phaseolus. Pl Physiol 61:72–75

    CAS  Article  Google Scholar 

  35. Pineda Rodo A, Brugière N, Vankova M, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DWS, Mok MC (2008) Overexpression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 59:2673–2686

    PubMed  Article  Google Scholar 

  36. Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    CAS  PubMed  Article  Google Scholar 

  37. Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    CAS  PubMed  Article  Google Scholar 

  38. Schmitz RY, Skoog F, Hecht SM, Bock RM, Leonard NJ (1972) Comparison of cytokinin activities of naturally occurring ribonucleosides and corresponding bases. Phytochem 11:1603–1610

    CAS  Article  Google Scholar 

  39. Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Pl Physiol 91:808–811

    CAS  Article  Google Scholar 

  40. Sondheimer E, Tzou DS (1971) The metabolism of hormones during seed germination and dormancy II. The metabolism of 8-14C-zeatin in bean axes. Pl Physiol 47:516–520

    CAS  Article  Google Scholar 

  41. Srivastava LM, Sawhney VK, Taylor IEP (1975) Gibberellic-acid-induced cell elongation in lettuce hypocotyls. Proc Nat Acad Sci 72:1107–1111

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Stuart DA, Durnam DJ, Jones RL (1977) Cell elongation and cell division in elongating hypocotyls sections. Planta 135:249–255

    CAS  PubMed  Article  Google Scholar 

  43. Suttle JC, Banowetz GM (2000) Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol Plant 109:68–74

    CAS  Article  Google Scholar 

  44. Szekeres M, Németh K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    CAS  PubMed  Article  Google Scholar 

  45. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Pl J 69:355–365

    CAS  Article  Google Scholar 

  46. Vanderhoef LN, Dute RR (1981) Auxin-regulated wall loosening and sustained growth in elongation. Pl Physiol 67:146–149

    CAS  Article  Google Scholar 

  47. Vince D (1964) Photomorphogenesis in plant stems. Biol Rev 39:506–533

    Article  Google Scholar 

  48. Withrow RB (1941) Response of seedlings to various wavebands of low intensity irradiation. Pl Physiol 16:241–256

    CAS  Article  Google Scholar 

Download references

Author contribution statement

Sophie Adler: she carried out experiments leading to histological and hormonal approaches. She did cytometry experiments, histological measures, statistical analyses, and paper writing. Jean-Luc Verdeil: he coached histological approaches and participated in paper correction. Geneviève Conéjéro: she coached microscope use, and participated in paper correction. Irina L. Zaharia: she coached hormonal dosages in the laboratory and participated in paper correction and English improvement. Amélie Sarrazin: she coached cytometry experiment. Julien Hoareau: he was at the origin of the paper, emphasizing the role of daylight on seedling morphology in the mutant. Isabelle Fock-Bastide: she participated in the paper writing. Michel Noirot: he participated in statistical analyses and paper writing.

Acknowledgments

This study was financially supported by the European Union, the Conseil Régional of Réunion and the French Institut pour la Recherche et le Développement (IRD). The authors thank Dr. Xiumei Han, Vera Cekic and Dang Van for excellent technical assistance. Authors also thank Pr. Charrier for its helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michel Noirot.

Additional information

Communicated by F. Canovas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 0 kb)

Supplementary material 2 (TXT 0 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adler, S., Verdeil, JL., Conejero, G. et al. Impact of the laurina mutation in Coffea arabica L. on semi-dwarfism, cell number and hormonal profiles in hypocotyls of seedlings growing under daylight. Trees 29, 1197–1205 (2015). https://doi.org/10.1007/s00468-015-1200-9

Download citation

Keywords

  • Coffea arabica ‘Laurina’
  • Hypocotyl semi-dwarfism
  • Cell division
  • Auxin
  • Cytokinin
  • Abscisic acid