Skip to main content
Log in

Cloning mature holm oak trees by somatic embryogenesis

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Integuments from holm oak developing ovules were suitable initial explants to obtain embryogenic lines from which plants could be regenerated.

Abstract

The implementation of multivarietal forestry as part of breeding strategies is expected to provide more productive forest plantations. To achieve this, a reliable and effective method for mass production of clonal plants is needed. Somatic embryogenesis is considered the enabling technology for implementing multivarietal forestry. The holm oak (Quercus ilex L.) is a Mediterranean evergreen tree of economic interests because of the acorn production for animal feed and edible fungi mycorrhization. The aim of this work was to obtain clonal plants by inducing somatic embryogenesis in tissues of female flowers from mature trees. The influence of the developmental stage of the explant, the genotype and medium composition, and the effect of arabinogalactan proteins on the induction frequency, were assessed. Somatic embryogenesis induction (frequency ranging from 1.2 to 3.2 %) was restricted to ovules excised at an advanced stage of development, when they were at least 3–4 mm wide and the rest of the ovules within the ovary had aborted. Somatic embryos arose from the integuments of those fertilized ovules. Embryogenic response was obtained on media with and without plant growth regulators. All the genotypes that were cultured on medium containing “as reported by Schenk and Hildebrandt (Can J Bot 50:199–204, 1972)” SH macronutrients could be captured. Treatments including Larix arabinogalactan proteins did not improve induction, while those from Acacia inhibited the embryogenic response. Several embryogenic lines were multiplied by repetitive embryogenesis on medium lacking plant growth regulators. Mature somatic embryos of three genotypes were germinated at frequencies ranging from 41 to 58 %, and converted into plants at frequencies from 11 to 30 %, depending on the genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alejano R, Vázquez-Piqué J, Carevic F, Fernández M (2011) Do ecological and silvicultural factors influence acorn mass in Holm oak (southwestern Spain)? Agrofor Syst 83:25–39. doi:10.1007/s10457-011-9369-4

    Article  Google Scholar 

  • Alemanno L, Berthouly M, Michaux-Ferrière N (1996) Histology of somatic embryogenesis from floral tissues cocoa. Plant Cell Tissue Organ Cult 46:187–194. doi:10.1007/BF02307094

    Article  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:s228–s245. doi:10.1105/tpc.017921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blasco M, Barra A, Brisa C, Corredoira E, Segura J, Toribio M, Arrillaga I (2013) Somatic embryogenesis in holm oak male catkins. Plant Growth Regul 71:261–270. doi:10.1007/s10725-013-9826-3

    Article  CAS  Google Scholar 

  • Boavida LC, Varela MC, Feijo JA (1999) Sexual reproduction in the cork oak (Quercus suber L.). I. The progamic phase. Sex Plant Reprod 11:347–353. doi:10.1007/s004970050162

    Article  Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254. doi:10.1007/s11240-009-9647-2

    Article  Google Scholar 

  • Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L (2007) An approach to acorn production in Iberian dehesas. Agrofor Syst 70:3–9. doi:10.1007/s10457-007-9034-0

    Article  Google Scholar 

  • Capuana M, Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tissue Organ Cult 48:23–29. doi:10.1023/A:1005890826431

    Article  CAS  Google Scholar 

  • Carimi F, Tortorici MC, De Pasquale F, Crescimanno FG (1998) Somatic embryogenesis and plant regeneration from undeveloped ovules and stigma/style explants of sweet orange navel group [Citrus sinensis (L.) Osb.]. Plant Cell Tissue Organ Cult 54:183–189. doi:10.1023/A:1006113731428

    Article  Google Scholar 

  • Carron MP, Enjalric F (1985) Embryogenèse somatique à partir du tégument interne de la graine d’Hevea brasiliensis (Kunth., Müll., Müll. Arg.). CR Acad Sci III-Vie 300(17):653–658

  • Carron MP, Enjalric F, Lardet L, Deschamps A (1989) Rubber (Hevea brasiliensis Müll. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5. Springer, Berlin, Heidelberg, pp 222–245

    Google Scholar 

  • Cheliak WM, Klimaszewska K (1991) Genetic variation in somatic embryogenic response in open-pollinated families of black spruce. Theor Appl Genet 82:185–190. doi:10.1007/BF00226211

    Article  CAS  PubMed  Google Scholar 

  • Corcobado T, Cubera E, Moreno G, Solla A (2013) Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric For Meteorol 169:92–99. doi:10.1016/j.agrformet.2012.09.017

    Article  Google Scholar 

  • Corredoira E, San-José MC, Vieitez AM (2012) Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees 26:881–891. doi:10.1007/s00468-011-0662-7

    Article  Google Scholar 

  • Féraud-Keller C, Espagnac H (1989) Conditions d’apparition d’une embryogénèse somatique sur des cals issus de la culture de tissus foliaires du chêne vert (Quercus ilex). Can J Bot 67:1066–1070. doi:10.1139/b89-139

    Google Scholar 

  • Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tissue Organ Cult 41:99–106. doi:10.1007/BF00051578

    Article  Google Scholar 

  • Figueira A, Janick J (1993) Development of nucellar somatic embryos of Theobroma cacao. Acta Hortic 336:231–238

    Google Scholar 

  • Gamborg OL (1966) Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Can J Biochem 44:791–799. doi:10.1139/o66-097

    Article  CAS  PubMed  Google Scholar 

  • Gea-Izquierdo G, Cañellas I, Montero G (2006) Acorn production in Spanish holm oak woodlands. For Syst (formerly Invest Agrar: Sist Recur For) 15:339–354. http://revistas.inia.es/index.php/fs/article/view/976

    Google Scholar 

  • Gingas VM (1991) Asexual embryogenesis and plant regeneration in from male catkins of Quercus. Hortic Sci 26:1217–1218

    Google Scholar 

  • Hernández I, Celestino C, Martínez I, Manjón JL, Díez J, Fernández-Guijarro B, Toribio M (2001) Cloning mature cork oak (Quercus suber L.) trees by somatic embryogenesis. Melhoramento 37:50–57 (ISSN 0368–9433)

    Google Scholar 

  • Hernández I, Celestino C, Alegre J, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis: II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770. doi:10.1007/s00299-003-0604-y

    PubMed  Google Scholar 

  • Hernández, I. Cuenca B, Carneros E, Alonso-Blázquez N, Ruiz M, Celestino C, Ocaña L, Alegre J, Toribio M (2011) Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. In: Nageswara-Rao M, Soneji JR (Eds) Focus on tree micropropagation and tissue culture. Tree and forestry science and biotechnology 5 (special issue 1). Global Science Books pp 19–26 (ISBN 978-4-903313-64-1)

  • Jörgensen J (1993) Embryogenesis in Quercus petraea. Ann For Sci 50:344s–350s. doi:10.1051/forest:19930738

    Article  Google Scholar 

  • Kanazashi T, Kanazashi A (2003) Estimation for the timing of the internal developmental processes of acorns from fruit size in Quercus serrata Thunb. ex Murray. J For Res 8:261–266. doi:10.1007/s10310-003-0035-1

    Article  Google Scholar 

  • Kayim M, Koc NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109:29–34. doi:10.1016/j.scienta.2006.01.040

    Article  CAS  Google Scholar 

  • L’Helgoual’ch M, Espagnac H (1987) Premières observations sur les capacités de rhizogénèse adventive du chêne vert (Quercus ilex L.). Ann For Sci 44:325–334. doi:10.1051/forest:19870304

    Article  Google Scholar 

  • Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26:125–137. doi:10.1007/s00497-013-0215-x

    Article  PubMed  Google Scholar 

  • Lelu-Walter M-A, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899. doi:10.1007/s11295-013-0620-1

    Article  Google Scholar 

  • Liñán J, Cantos M, Troncoso J, García JL, Fernández A, Troncoso A (2011) Some propagation methods for cloning holm oak (Quercus ilex L.) plants. Cent Eur J Biol 6:359–364. doi:10.2478/s11535-011-0007-y

    Article  Google Scholar 

  • Litz RE, Conover RA (1982) In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Sci Lett 26:153–158. doi:10.1016/0304-4211(82)90086-4

    Article  CAS  Google Scholar 

  • Litz RE, Knight RL, Gazit S (1982) Somatic embryos from culture ovules of polyembryonic Mangifera indica L. Plant Cell Rep 1:264–266. doi:10.1007/BF00272635

    Article  CAS  PubMed  Google Scholar 

  • López-Vela D, Celestino C, Carneros E, Toribio M, Alegre J (2008) Anatomical characterization of the Quercus suber zygotic embryo development. In: Vázquez J, Pereira H, González-Pérez A (eds) Suberwood: new challenges for integration of cork oak forest and products. University of Huelva Publisher, Spain, pp 17–26. ISBN 978-84-96826-47-2

    Google Scholar 

  • Mallón R, Martínez T, Corredoira E, Vieitez AM (2013) The positive effect of arabinogalactan on induction of somatic embryogenesis in Quercus bicolor followed by embryo maturation and plant regeneration. Trees. doi:10.1007/s00468-013-0877-x

    Google Scholar 

  • Martínez T, Vidal N, Ballester A, Vieitez AM (2012) Improved organogenic capacity of shoot cultures from mature pedunculate oak trees through somatic embryogenesis as rejuvenation technique. Trees 26:321–330. doi:10.1007/s00468-011-0594-2

    Article  Google Scholar 

  • Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Plant Cell Tissue Organ Cult 74:229–235. doi:10.1023/A:1024072913021

    Article  CAS  Google Scholar 

  • Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev-Pl 40:495–498. doi:10.1079/IVP2004557

    Article  CAS  Google Scholar 

  • Merkle SA, Wiecko AT, Watson-Pauley BA (1991) Somatic embryogenesis in American chestnut. Can J For Res 21:1698–1701. doi:10.1139/x91-235

    Article  Google Scholar 

  • Michaux-Ferrière N, Grout H, Carron MP (1992) Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae). Am J Bot 79:174–180

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Navarro L, Juárez J (1977) Elimination of Citrus pathogens in propagative budwood. II. In vitro propagation. Proc Int Soc Citric 3:973–987

    Google Scholar 

  • Park Y-S, Bonga JM (2011) Application of somatic embryogenesis in forest management and research. In: Park Y-S, Bonga JM, Park SY, Moon HK (eds.). Advances in somatic embryogenesis of trees and its application for the future forest and plantations. Proceedings of IUFRO Working Party 2.09.02 conference, August 19–21, 2010, Suwon, Republic of Korea, pp 3–8 http://www.iufro20902.org/suwon2010/documents/Proceedings.pdf

  • Pinto-Correia T, Ribeiro N, Sá-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor Syst 82:99–104. doi:10.1007/s10457-011-9388-1

    Article  Google Scholar 

  • Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares, Spain. Agrofor Syst 51:23–34. doi:10.1023/A:1006462104555

    Article  Google Scholar 

  • Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. J Arid Environ 57:345–364. doi:10.1016/S0140-1963(03)00103-4

    Article  Google Scholar 

  • Raghavan V (2003) One hundred years of zygotic embryo culture investigations. In Vitro Cell Dev-Pl 39:437–442. doi:10.1079/IVP2003436

    Article  Google Scholar 

  • Reyna-Domenech S, García-Barreda S (2008) European black truffle: its potential role in agroforestry development in the marginal lands of Mediterranean calcareous mountains. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects. Advances in agroforestry, vol 6. Springer, Netherlands, pp 295–317. doi:10.1007/978-1-4020-8272-6_14

  • San-José MC, Corredoira E, Martínez MT, Vidal N, Valladares S, Mallón R, Vieitez AM (2010) Shoot apex explants for induction of somatic embryogenesis in mature Quercus robur L. trees. Plant Cell Rep 29:661–671. doi:10.1007/s00299-010-0852-6

    Article  PubMed  Google Scholar 

  • Sauer U, Wilhelm E (2005) Somatic embryogenesis from ovaries, developing ovules and immature zygotic embryos, and improved embryo development of Castanea sativa. Biol Plant 49:1–6. doi:10.1007/s10535-005-1006-5

    Article  Google Scholar 

  • Savill P, Kanowski P (1993) Tree improvement programs for European oaks: goals and strategies. Ann For Sci 50:368s–383s. doi:10.1051/forest:19930741

    Article  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026

    Article  CAS  Google Scholar 

  • Sommer H, Brown C, Kormanik P (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gazz 136:196–200

    Article  Google Scholar 

  • Srinivasan C, Mullins MG (1980) High-frequency somatic embryo production from unfertilized ovules of grapes. Sci Hortic 13:245–252. doi:10.1016/0304-4238(80)90062-X

    Article  Google Scholar 

  • Stefanello S, Vesco LLD, Ducroquet JPHJ, Nodari RO, Guerra MP (2005) Somatic embryogenesis from floral tissues of feijoa (Feijoa sellowiana Berg). Sci Hortic 105:117–126. doi:10.1016/j.scienta.2004.11.006

    Article  CAS  Google Scholar 

  • Toribio M, Fernández C, Celestino C, Martínez MT, San-José MC, Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tissue Organ Cult 76:283–287. doi:10.1023/B:TICU.0000009245.92828.26

    Article  Google Scholar 

  • Vega de Rojas R, Kitto SL (1991) Regeneration of Babaco (Carica pentagona) from ovular callus. J Am Soc Hortic Sci 116:747–752

    Google Scholar 

  • Vieitez AM, Corredoira E, Martínez MT, San-José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2012) Application of biotechnological tools to Quercus improvement. Eur J For Res 131:519–539. doi:10.1007/s10342-011-0526-0

    Article  CAS  Google Scholar 

  • Viejo M, Rodríguez R, Valledor L, Pérez M, Cañal MJ, Hasbún R (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Reprod 23:315–323. doi:10.1007/s00497-010-0145-9

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Powell WA, Maynard CA (1999) Development and germination of American chestnut somatic embryos. Plant Cell Tissue Organ Cult 57:47–55. doi:10.1023/A:1006360730898

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by The Spanish Ministry of Science and Innovation (AGL2010-22292-C01 and C03 projects). It was also supported by a postgraduate fellowship from IMIDRA to A. Barra-Jiménez. This work is part of the requirements to fulfill the A. Barra-Jiménez’s Ph.D. degree.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Toribio.

Additional information

Communicated by K. Klimaszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra-Jiménez, A., Blasco, M., Ruiz-Galea, M. et al. Cloning mature holm oak trees by somatic embryogenesis. Trees 28, 657–667 (2014). https://doi.org/10.1007/s00468-014-0979-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-0979-0

Keywords

Navigation