Skip to main content

Advertisement

Log in

Restoration of high altitude forests in an area affected by a wildfire: Polylepis australis Bitt. seedlings performance after soil inoculation

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen EB, Allen MF, Egerton-Warburton LM, Corkidi L, Gómez-Pompa A (2003) Impacts of early-and late-seral mycorrhizae during restoration in seasonal tropical forest. Ecol Appl 13:1701–1717

    Article  Google Scholar 

  • Amaranthus M, Steinfeld D (2005) Arbuscular mycorrhizal inoculation following biocide treatment improves Calocedrus decurrens survival and growth in nursery and outplanting sites. In: Dumroese R, Riley LE, Landis T (eds) National Proceedings: forest and conservation nursery associations 2004; 2004 July 12–15; Charleston, NC; and 2004 July 26–29; Medford, OR. Proc. RMRS-P-35. Fort Collins, pp 103–108

  • Asbjornsen H, Montagnini F (1994) Vesicular-arbuscular mycorrhizal inoculum potential affects the growth of Stryphnodendron microstachyum seedlings in a costa rican human tropical lowland. Mycorrhiza 5:45–51

    Article  Google Scholar 

  • Becerra AG, Cabello M, Zak MR, Bartoloni N (2009) Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina. Mycologia 101:612–621

    Article  PubMed  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–932

    Article  Google Scholar 

  • Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22:233–236

    Article  CAS  Google Scholar 

  • Cabido M (1985) Las comunidades vegetales de Pampa de Achala, Sierras de Córdoba. Argen Doc Phytosociol 9:431–443

    Google Scholar 

  • Cingolani AM, Cabido M, Renison D, Solís Neffa V (2003) Combined effects of environment and grazing on vegetation structure in argentine granite grasslands. J Veg Sci 14:223–232

    Article  Google Scholar 

  • Cingolani AM, Renison D, Zak MR, Cabido M (2004) Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units. Remot Sens Environ 92:84–97

    Article  Google Scholar 

  • Cingolani AM, Renison D, Tecco PA, Gurvich DE, Cabido M (2008) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538–551

    Article  Google Scholar 

  • Closa I, Goicoechea N (2011) Infectivity of arbuscular mycorrhizal fungi in naturally regenerating, unmanaged and clear-cut beech forests. Pedosphere 21:65–74

    Article  Google Scholar 

  • Cuenca G, De Andrade Z, Lovera M, Fajardo L, Meneses E (2003) Mycorrhizal response of Clusia pusilla growing in two different soils in the field. Trees 17:200–206

    Google Scholar 

  • Cuenca G, De Andrade Z, Lovera M, Fajardo L, Meneses E (2004) The effect of two arbuscular mycorrhizal inocula of contrasting richness and the same mycorrhizal potential on the growth and survival of wild plant species from La Gran Sabana, Venezuela. Can J Bot 82:582–589

    Article  Google Scholar 

  • Díaz G, Honrubia M (1993) Infectivity of mine soils from southeast Spain. II. Mycorrhizal population levels in spoilt sites. Mycorrhiza 4:85–88

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyro-sequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416

    Article  Google Scholar 

  • Fischer CR, Janos DP, Perry DA, Linderman RG, Sollins P (1994) Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369

    Article  Google Scholar 

  • Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes, Nordeco

    Google Scholar 

  • Friese CF, Koske RE (1991) The spatial dispersion of spores of vesicular-arbuscular mycorrhizal fungi in a sand dune: microscale patterns associated with the root architecture of American beachgrass. Mycol Res 95:952–957

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  CAS  PubMed  Google Scholar 

  • Heneghan L, Miller SP, Baer S, Callaham MA, Montgomery J, Pavao-Zuckerman M, Rhoades CC, Richardson S (2008) Integrating soil ecological knowledge into restoration management. Rest Ecol 16:608–617

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Collins Johnson N, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Ubanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Irrazabal G, Velázquez S, Cabello MN (2004) Infectividad y diversidad de HMA de la rizosfera de los talares de Magdalena, provincia de Buenos Aires, Argentina. Bol Micol 19:49–57

    Google Scholar 

  • Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Kauffman JB, Steele MD, Cummings DL, Jaramillo VJ (2003) Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a mexican tropical dry forest. For Ecol Man 176:1–12

    Article  Google Scholar 

  • Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113

    Article  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Koske RE, Gemma JN (1990) VA mycorrhizae in strand vegetation of Hawaii: evidence for long-distance codispersal of plants and fungi. Am J Bot 77:466–474

    Article  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • López-García A, Hempel S, Miranda JdeD, Rillig MC, Barea JM, Azcón-Aguilar C (2013) The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from mediterranean ecosystems of southeast Spain. Plant Soil 370:355–366

    Article  Google Scholar 

  • Lugo M, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cordoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94:579–586

    Article  PubMed  Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, UK

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41

    Article  PubMed  Google Scholar 

  • Martino J, Urcelay C, Renison D (2011) Crecimiento y colonización micorrícica de Polylepis australis Bitter (Rosaceae) en suelos con distinta historia de pastoreo. Kurtziana 36:69–77

    Google Scholar 

  • McGonigle TP, Miller M, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Menoyo E, Becerra AG, Renison D (2007) Mycorrhizal associations in Polylepis woodlands of central Argentina. Can J Bot 85:526–531

    Article  Google Scholar 

  • Merryweather J, Fitter AH (1998) The arbuscular mycorrhizal fungi of hyacinthoides non-scripta II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131–142

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosys Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Omar MB, Bolland L, Heather WA (1979) P.V.A. (polyvinyl alcohol). A permanent mounting medium for fungi. Bull Br Mycol Soc 13:31–32

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Tran Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Picone C (2000) Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750

    Article  Google Scholar 

  • Plenchette C, Perrin R, Duvert P (1989) The concept of soil infectivity and a method for its determination as applied to endomycorrhizas. Can J Bot 67:112–115

    Article  Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439–1446

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Renison D, Cingolani AM (2002) Evaluación de la supervivencia y crecimiento de plantines de Polylepis australis (Rosaceae) para la elección de plantas semilleras. Agriscientia 19:63–66

    Google Scholar 

  • Renison D, Cingolani AM, Schinner D (2002) Optimizing restoration of Polylepis australis woodlands: when, where and how to transplant seedlings to the mountains? Ecotropica 8:219–224

    Google Scholar 

  • Renison D, Cingolani AM, Suarez R, Menoyo E, Coutsiers C, Sobral A, Hensen I (2005) The restoration of degraded mountain woodlands: effects of seed provenance and microsite characteristics on Polylepis australis seedling survival and growth in central Argentina. Res Ecol 13:129–137

    Article  Google Scholar 

  • Renison D, Hensen I, Suarez R, Cingolani AM, Marcora P, Giorgis MA (2010) Soil conservation in Polylepis mountain forests of central Argentina: Is livestock reducing our natural capital? Austral Ecol 35:435–443

    Article  Google Scholar 

  • Renison D, Hensen I, Suarez R (2011) Landscape structural complexity of high-mountain Polylepis australis forests: a new aspect of restoration goals. Res Ecol 19:390–398

    Article  Google Scholar 

  • Renison D, Cuyckens GAE, Pacheco S, Guzmán GF, Grau HR, Marcora P, Robledo GL, Cingolani AM, Dominguez J, Landi M, Bellis L, Hensen I (2013) Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecol Austral 23:27–36

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Salgado Salomón ME, Barroetaveña C, Rajchenberg M (2010) Do pine plantations provide mycorrhizal inocula for seedlings establishment in grasslands from Patagonia, Argentina? New For 41:191–205

    Article  Google Scholar 

  • Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid mediterranean ecosystem. Mycorrhiza 22:449–460

    Article  PubMed  Google Scholar 

  • Schenk NC, Perez Y (1990) Manual of identification of vesicular-arbuscular mycorrhizal fungi. Gainesville, USA

    Google Scholar 

  • Sene G, Thiao M, Manga A, Kane A, Samba-Mbaye R, Samba-Mbaye M, Khasa D, Sylla SN (2012) Arbuscular mycorrhizal soil infectivity and spores distribution across plantations of tropical, subtropical and exotic tree species: a case study from the forest reserve of Bandia. Senegal Afr J Ecol 50:218–232

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Great Britain

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soteras F, Becerra A, Cofré N, Bartoloni J, Cabello M (2012) Arbuscular mycorrhizal fungal species in saline environments of Central Argentina: seasonal variation and distribution of spores at different soil depths. Sydowia 64:301–311

    Google Scholar 

  • Soteras F, Renison D, Becerra AG (2013) Growth response, phosphorus content and root colonization of Polylepis australis Bitt. seedlings inoculated with different soil types. New For 44:577–589

    Article  Google Scholar 

  • Stürmer SL, Filho OK, De Queiroz H, De Mendonça MM (2006) Occurrence of arbuscular mycorrhizal fungi in soils of early stages of a secondary succession of Atlantic forest in south Brazil. Acta Bot Bras 20:513–521

    Article  Google Scholar 

  • Tommerup IC (1983) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans Brit Mycol Soc 81:381–387

    Article  Google Scholar 

  • Torrecillas E, Alguacil del Mar M, Roldán A (2012) Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a mediterranean, semiarid degraded area. Plant Soil 354:97–106

    Article  CAS  Google Scholar 

  • Torres R, Renison D, Hensen I, Suarez R, Enrico L (2008) Polylepis australis’ regeneration niche in relation to seed dispersal, site characteristics and livestock density. For Ecol Man 254:255–260

    Article  Google Scholar 

  • Velázquez S, Cabello M (2011) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from El Palmar national park soils. Eur J Soil Biol 47:230–235

    Article  Google Scholar 

  • Walker C, Mize W, McNabb HS (1982) Populations of endogonaceous fungi at two populations in central Iowa. Can J Bot 60:2518–2529

    Article  Google Scholar 

  • Zak MR, Cabido M (2002) Spatial patterns of the Chaco vegetation of central argentina: integration of remote sensing and phytosociology. Appl Veg Sci 5:213–226

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Agencia de Promoción Científica y Tecnológica––PICT 438-2008, Consejo Nacional de Investigaciones Científicas y Técnicas––PIP 0269 and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT-UNC). F.S. is grateful to CONICET for providing her fellowship. A.B. and D.R. are researchers of CONICET. We thank to the Quebrada del Condorito National Park authorities that generously allowed the use of the lands for the reforestation assay. This research would not have been possible without numerous volunteers (especially Barberá I., Berizzo A., Bernaschini M.L., Domínguez J., Farias G., Flores S., Galli E., Gatica L., Peralta G., Street E., and researchers and PhD students of the Laboratorio de Micología-IMBIV-) who provided exceptional field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Soteras.

Additional information

Communicated by P. E. Courty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soteras, F., Renison, D. & Becerra, A.G. Restoration of high altitude forests in an area affected by a wildfire: Polylepis australis Bitt. seedlings performance after soil inoculation. Trees 28, 173–182 (2014). https://doi.org/10.1007/s00468-013-0940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0940-7

Keywords

Navigation