Skip to main content

Advertisement

Log in

Lignin and cellulose concentrations in roots of Douglas fir and European beech of different diameter classes and soil depths

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Comparing two tree species, we tested the effects of root diameter (up to 30 mm) and soil depth (down to 1.2 m) on the concentrations of lignin, cellulose and nitrogen (N) in roots of approximately 50-year-old Douglas fir and European beech growing in a temperate forest in South-western Germany. Fine roots (diameter 0.5–2 mm) exhibited significantly higher lignin concentrations, but lower cellulose concentrations than medium or coarse roots (diameter >5 mm). The cellulose and lignin concentrations of the roots as well as their lignin:cellulose ratios did not differ significantly among soil depths. In the Douglas fir, there was a tendency of decreasing N concentrations and increasing lignin:N ratios with increasing soil depth. This trend was absent or less pronounced in the beech. Beech roots displayed significantly higher cellulose and N concentrations and lower lignin:cellulose and lignin:N ratios than roots of the Douglas fir. Generally, the lignin concentrations of the roots did not differ between the tree species. Cellulose and lignin concentrations exhibited a significantly negative correlation. As several studies have demonstrated that plant litter decomposition is governed by the lignin:cellulose and lignin:N ratios more than by the lignin concentration of the detritus, the fraction of individual tree species in the stand composition might affect the decomposability of roots in beech–Douglas fir forests, and might also have an influence on soil carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Bartelink HH (1998) A model of dry matter partitioning in trees. Tree Physiol 18:91–101

    Article  PubMed  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter—decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Berg B, Johansson MB, Meentemeyer V, Kratz W (1998) Decomposition of tree root litter in a climatic transect of coniferous forests in northern Europe: a synthesis. Scand J For Res 13:402–412

    Article  Google Scholar 

  • Brendel O, Iannetta PPM, Stewart D (2000) A rapid and simple method to isolate pure alpha-cellulose. Phytochem Anal 11:7–10

    Article  CAS  Google Scholar 

  • Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501

    Article  CAS  PubMed  Google Scholar 

  • Burylo M, Rey F, Mathys N, Dutoit T (2012) Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf Process Landf 37:1463–1470

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemaeker J, Muys B (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305:207–226

    Article  CAS  Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Harcourt Academic Press, San Diego

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (eds) (1986) Ökosystemforschung—Ergebnisse des Sollingprojekts 1966–1986. Ulmer, Stuttgart

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Fukushima RS, Hatfield RD (2004) Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J Agric Food Chem 52:3713–3720

    Article  CAS  PubMed  Google Scholar 

  • Genet M, Stokes A, Salin F, Mickovski S, Fourcaud T, Dumail JF, van Beek R (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1–9

    Article  CAS  Google Scholar 

  • Genet M, Li M, Luo T, Fourcaud T, Clément-Vidal A, Stokes A (2011) Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Ann Bot 107:311–320

    Article  CAS  PubMed  Google Scholar 

  • Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res 114:F03013

    Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297

    Article  PubMed  Google Scholar 

  • Jacob M, Viedenz K, Polle A, Thomas FM (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57:504–516

    Article  CAS  Google Scholar 

  • Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Parey, Hamburg

    Google Scholar 

  • Kreutzer K (1961) Wurzelbildung junger Waldbäume auf Pseudogleyböden. Forstw Cbl 80:356–392

    Article  Google Scholar 

  • Kutschera L, Lichtenegger E (2002) Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Leopold Stocker Verlag, Graz

    Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9:46–62

    Article  CAS  Google Scholar 

  • Newman GS, Hart SC (2006) Nutrient covariance between forest foliage and fine roots. For Ecol Manage 236:136–141

    Article  Google Scholar 

  • Niklas KJ (1992) Plant Biomechanics. University of Chicago Press, Chicago

    Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Takeda H (2005) Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41–49

    Article  CAS  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Globalscale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Paul Haupt, Bern

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Röhrig E (1966) Die Wurzelentwicklung der Waldbäume in Abhängigkeit von den ökologischen Verhältnissen. I. Teil. Forstarchiv 37:217–229

    Google Scholar 

  • Sanaullah M, Chabbi A, Lemaire G, Charrier X, Rumpel C (2010) How does plant leaf senescence of grassland species influence decomposition kinetics and litter compounds dynamics? Nutr Cycl Agroecosyst 88:159–171

    Article  Google Scholar 

  • Sariyildiz T (2008) Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in Northeast Turkey. Ecosystems 11:841–853

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354

    Article  PubMed  Google Scholar 

  • Talbot JM, Yelle DJ, Nowick J, Treseder KK (2012) Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295

    Article  CAS  Google Scholar 

  • Thomas FM (2000) Vertical rooting patterns of mature Quercus trees growing on different soil types in northern Germany. Plant Ecol 147:95–103

    Article  Google Scholar 

  • Tosi M (2007) Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87:268–283

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Zhang CB, Chen LH, Jiang J, Zhou S (2012) Effects of gauge length and strain rate on the tensile strength of tree roots. Trees 26:1577–1584

    Article  Google Scholar 

Download references

Acknowledgments

We thank FAWF (Research Institute for Forest Ecology and Forestry of Rhineland-Palatinate) for support in excavating the soil trenches. We also thank two anonymous reviewers for valuable comments on a previous version of the manuscript. This study was funded by the European Union, INTERREG IVB North-West Europe, Project 003A ForeStClim (“Transnational Forestry Management Strategies in Response to Regional Climate Change Impacts”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Thomas.

Additional information

Communicated by T. Fourcaud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, F.M., Molitor, F. & Werner, W. Lignin and cellulose concentrations in roots of Douglas fir and European beech of different diameter classes and soil depths. Trees 28, 309–315 (2014). https://doi.org/10.1007/s00468-013-0937-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0937-2

Keywords

Navigation