Skip to main content

Advertisement

Log in

Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We investigated vegetation structure, seasonal water use and leaf deciduousness in a seasonally dry forest of Dzibilchaltún, Mexico. Legumes, species which tend to dominate these forests, have an array of water-saving traits. We explored whether legume species had reduced water use under similar growth conditions as other non-legume species of this seasonally dry forest. Sap flux and conductive sapwood area were measured for eight legume and 12 non-legume species. Species abundance, diameter at breast height (DBH), wood density and seasonal leaf cover were characterized in 16, 10 × 10 m2 plots. Seasonal stand water use was calculated using the sap flux and ecological data. As predicted, legumes presented lower whole-tree water use compared with sympatric non-legume species. This difference, however, was related to a higher allocation to non-conductive heartwood in legumes and not to differences in sap flux density. Differences in allocation were higher in wider stems (>10 cm DBH); legumes above 25 cm DBH presented nearly half the daily water use of non-legumes of similar size. Wet (July) and dry (March) season stand water use was 629,000 and 156,000 kg ha−1 month−1, respectively. During the wet season three non-legume species with high basal area dominated the stand water use, but due to early leaf fall in these species, dry season stand water use was dominated by the legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen ON, Allen EK (1981) The leguminosae. The University of Wisconsin Press, Madison

    Google Scholar 

  • Berthier S, Kokutse AD, Stokes A, Fourcaud T (2001) Irregular heartwood formation in Maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann Bot 87:19–25

    Article  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449

    Article  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Hoffmann WA, Meinzer FC, Franco AC, Giambelluca T, Miralles-Wilhelm F (2008) Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agric For Meteorol 148:839–849

    Article  Google Scholar 

  • Cernusak LA, Aranda J, Marshall JD, Winter K (2007) Large variation in whole-plant water-use efficiency among tropical tree species. New Phytol 173:294–305

    Article  PubMed  Google Scholar 

  • Cernusak LA, Winter K, Aranda J, Turner BL (2008) Conifers, angiosperm trees, and lianas: Growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. Plant Physiol 148:642–659

    Article  PubMed  CAS  Google Scholar 

  • Cernusak LA, Winter K, Aranda J, Virgo A, Garcia M (2009) Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species. Tree Physiol 29:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Cienciala E, Kučera J, Malmer A (2000) Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. J Hydrol 236:109–120

    Article  Google Scholar 

  • Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol 19:681–687

    Article  PubMed  Google Scholar 

  • de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619

    Article  Google Scholar 

  • Fiora A, Cescatti A (2006) Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree Physiol 26:1217–1225

    Article  PubMed  Google Scholar 

  • Fiora A, Cescatti A (2008) Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies. Tree Physiol 28:1317–1323

    Article  PubMed  Google Scholar 

  • Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert MP (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric For Meteorol 149:1365–1376

    Article  Google Scholar 

  • Gondwe BRN, Hong SH, Wdowinski S, Bauer-Gottwein P (2010) Hydrologic dynamics of the ground-water-dependent Sian Ka’an Wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30:1–13

    Article  Google Scholar 

  • González-Iturbe JA, Olmsted I, Tun-Dzul F (2002) Tropical dry forest recovery after long term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatan, Mexico. For Ecol Manag 167:67–82

    Article  Google Scholar 

  • Gotsch SG, Geiger EL, Franco AC, Goldstein G, Meinzer FC, Hoffmann WA (2010) Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163:291–301

    Article  PubMed  Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:193–200

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    PubMed  Google Scholar 

  • Grier CC, Waring RH (1974) Conifer foliage mass related to sapwood area. For Sci 20:205–206

    Google Scholar 

  • Hutley LB, O’Grady AP, Eamus D (2000) Evapotranspiration from eucalypt open-forest savanna of northern Australia. Funct Ecol 14:183–194

    Article  Google Scholar 

  • Hutley LB, O’Grady AP, Eamus D (2001) Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia 126:434–443

    Article  Google Scholar 

  • James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P (2003) Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia 134:37–45

    Article  PubMed  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans Roy Soc Lond B 273:593–610

    Article  CAS  Google Scholar 

  • Koller D (2000) Plants in search of sunlight. In: Callow JA (ed) Advances in botanical research, vol 33. Academic Press, New York, pp 35–131

    Chapter  Google Scholar 

  • Lebrija-Trejos E, Bongers F, García EAP, Meave JA (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431

    Article  Google Scholar 

  • Lebrija-Trejos E, Perez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398

    Article  PubMed  Google Scholar 

  • Lu P, Urban L, Zhao P (2004) Granier’s thermal dissipation probe (TDP) methods for measuring sap flow in trees: Theory and practice. Acta Bot Sin 46:631–646

    Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82

    Article  Google Scholar 

  • Medina E (1995) Diversity of life forms of higher plants in neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 221–242

    Chapter  Google Scholar 

  • Meinzer FC, Goldstein G, Andrade JL (2001) Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiol 21:19–26

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC, Bond BJ, Warren JM, Woodruff DR (2005) Does water transport scale universally with tree size? Funct Ecol 19:558–565

    Article  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. S Soc Exp Biol 19:205–234

    CAS  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Orellana R (1999) Evaluación climática. In: García A, Córdova J (eds) Atlas de Procesos Territoriales de Yucatán. Universidad Autónoma de Yucatán, Mérida, pp 163–182

    Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537

    Google Scholar 

  • Pérez-García EA, Meave JA, Gallardo C (2001) Vegetación y flora de la región de Nizanda, istmo de Tehuantepec, Oaxaca, México. Acta Bot Mex 56:19–88

    Google Scholar 

  • Pfautsch S, Bleby TM, Rennenberg H, Adams MA (2010) Sap flow measurements reveal influence of temperature and stand structure on water use of Eucalyptus regnans forests. Forest Ecol Manag 259:1190–1199

    Article  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Article  Google Scholar 

  • Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170:807–818

    Article  PubMed  Google Scholar 

  • Querejeta JI, Estrada-Medina H, Allen MF, Jimenez-Osornio JJ, Ruenes R (2006) Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287:187–197

    Article  CAS  Google Scholar 

  • Ricalde MF, Andrade JL, Duran R, Dupuy JM, Simá JL, Us-Santamaría R, Santiago LS (2010) Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient. Oecologia 164:871–880

    Article  PubMed  Google Scholar 

  • Schneider R, Berninger F, Ung CH, Mäkelä A, Swift DE, Zhang SY (2011) Within crown variation in the relationship between foliage biomass and sapwood area in jack pine. Tree Physiol 31:22–29

    Article  PubMed  Google Scholar 

  • Schrire B, Lewis G, Lavin M (2005) Biogeography of the leguminosae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, Surrey, pp 21–54

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43:9–35

    Article  Google Scholar 

  • Swenson NG, Enquist BJ (2008) The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. Am J Bot 95:516–519

    Article  PubMed  Google Scholar 

  • Tamayo-Chim M, Reyes-García C, Orellana R (2012) A combination of forage species with different responses to drought can increase year-round productivity in seasonally dry silvopastoral systems. Agroforest Syst 84:287–297

    Article  Google Scholar 

  • Thien LB, Bradburn AS, Welden AL (1982) The woody vegetation of Dzibilchaltún a Maya archaeological site in Northwest Yucatan, Mexico. Middle American Research Institute, Tulane University, New Orleans

    Google Scholar 

  • Thomas JH, Robert AV (1990) Transpiration of plantation pinus radiata estimated by the heat pulse method and the bowen ratio. Hydrol Proc 4:289–298

    Article  Google Scholar 

  • Valdez-Hernández M, Andrade JL, Jackson PC, Rebolledo-Vieyra M (2010) Phenology of five tree species of a tropical dry forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil 329:155–171

    Article  Google Scholar 

  • Valencia MS, Vargas JH (1997) Método empírico para estimar la densidad básica en muestras pequeñas de madera. Madera y Bosques 3:81–87

    Google Scholar 

  • Vertessy RA, Benyon RG, O’Sullivan SK, Gribben PR (1995) Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiol 15:559–567

    PubMed  Google Scholar 

  • Villaseñor JL, Maeda P, Rosell JA, Ortiz E (2007) Plant families as predictors of plant biodiversity in Mexico. Divers Distrib 13:871–876

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291

    Article  PubMed  Google Scholar 

  • White D, Beadle C, Worledge D, Honeysett J, Cherry M (1998) The influence of drought on the relationship between leaf and conducting sapwood area in Eucalyptus globulus and Eucalyptus nitens. Trees 12:406–414

    Google Scholar 

  • Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in trees. Tree Physiol 18:499–512

    Article  PubMed  Google Scholar 

  • Yang J, Kamdem DP, Keathley DE, Han KH (2004) Seasonal changes in gene expression at the sapwood–heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol 24:461–474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carlos Cervera for technical assistance, Diana Trejo who allowed access to Dzibilchaltún National Park, and Comisión Nacional del Agua for providing meteorological data. Reyes-García received a Postdoctoral scholarship from Fondo Sectorial Comisión Nacional Forestal-Consejo Nacional de Ciencia y Tecnología Grant No. 2003-C03-09765 and from Consejo Nacional de Ciencia y Tecnología No. 050356. This study was supported by the National Science Foundation, grant No. 0516387 to P. Jackson. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Three anonymous reviewers gave very helpful comments to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casandra Reyes-García.

Additional information

Communicated by A. C. Franco.

Appendix I

Appendix I

See Table 2

Table 2 Species, number of repetitions (reps.), seasons and stem radius of trees measured for sap flux

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes-García, C., Andrade, J.L., Simá, J.L. et al. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26, 1317–1330 (2012). https://doi.org/10.1007/s00468-012-0708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0708-5

Keywords

Navigation