Skip to main content
Log in

Anatomical observation of polyphenol changes in epidermal cells during the development of Quercus acutissimaScleroderma verrucosum ectomycorrhizae

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Quercus acutissima seedlings were cultivated in growth pouches and inoculated with Scleroderma verrucosum in order to assess the changes in polyphenol contents in epidermal cells during ECM development. Semithin sections stained with metachromatic Toluidine Blue O (TBO) were compared among non-inoculated lateral roots, early mantled lateral roots, and mycorrhizal roots with a mature mantle. Hyphae adhered closely or were embedded in mucilage-like materials on the epidermis. Epidermal cells and root hairs of the non-inoculated second-order lateral roots developing from the taproot harbored polyphenolic compounds that were stained by TBO. At non-inoculated stage, the average numbers of epidermal cells stained entirely (PC2), stained partially (PC1) or remaining unstained (PC0) were 16.5 ± 0.7, 0 ± 0, and 0 ± 0, respectively. At the early mantled stage, the numbers were 6.5 ± 1.6, 5.2 ± 1.4, and 4.2 ± 1.0, and at the mycorrhizal stage, it was 0 ± 0, 0 ± 0, and 32.8 ± 1.3 for PC2, PC1, and PC0, respectively. Total phenolic content in the root tips at each developmental stage declined with ECM development. The early mantled stage involved a dynamic process of polyphenol localization. However, some epidermal cells and endodermal cells of the proximal zone accumulated polyphenols. Eventually, polyphenolic compounds, which were found abundantly in the epidermal cells and root hairs of the non-inoculated lateral roots of the host, disappeared at the mycorrhization process with the symbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainsworth E, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Foiln-Ciocalteu reagent. Nat Protoc 2:875–877

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Ashford AE, Allaway WG, Reed ML (1996) A possible role for the thick-walled epidermal cells in the mycorrhizal hair roots of Lysinema ciliatum R. Br. and other Epacridaceae. Ann Bot 77:375–381

    Article  Google Scholar 

  • Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net structure and formation in fully ensheathed ectomycorrhizas. Nord J Bot 6:837–842

    Article  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    Article  PubMed  CAS  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 16(55):123–142

    Article  Google Scholar 

  • Fortin J, Piché Y, Lalonde M (1980) Techniques for the observation of early morphological changes during ectomycorrhizal formation. Can J Bot 58:361–365

    Article  Google Scholar 

  • Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttle RF (2007) Ectomycorrhiza communities of Red oak (Quercus rubra L.) of different age in the Lusantian lignite mining district, East Germany. Mycorrhiza 17:279–290

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular–arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570

    Article  PubMed  CAS  Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 149(2):349–355

    Google Scholar 

  • Ling-lee M, Chilvers GA, Ashford AE (1977) A histochemical study of phenolic materials in mycorrhizal and uninfected roots of Eucalyptus fastigata Deane and Maiden. New Phytol 78:313–328

    Article  CAS  Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1984) Ectomycorrhiza formation in Eucalyptus II. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytol 96:43–53

    Article  CAS  Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of Loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:245–254

    Article  Google Scholar 

  • Massicotte HB, Peterson RL, Melville LH (1988) Ontogeny of Alnus rubra-Alpova diplophloeus ectomycorrhizae I. Light microscopy and scanning electron microscopy. Can J Bot 67:191–209

    Article  Google Scholar 

  • Massicotte HB, Peterson RL, Melville LH (1989) Hartig net structure of ectomycorrhizae synthesized between Laccaria bicolor (Tricholomaceae) and two hosts: Betula alleghaniensis (Betulaceae) and Pinus resinosa (Pinaceae). Am J Bot 76:1654–1667

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Molina R, Peterson RL (1993) Structure and histochemistry of mycorrhizae synthesized between Arbutus menziesii (Ericaceae) and two basidiomycetes, Pisolithus tinctorius (Pisolithaceae) and Piloderma bicolor (Corticiaceae). Mycorrhiza 3:1–11

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Molina R (1999a) Biology of the ectomycorrhizal fungal genus, Rhizopogon IV. Comparative morphology and anatomy of ectomycorrhizas synthesized between several Rhizopogon species on Ponderosa pine (Pinus ponderosa). New Phytol 142:355–370

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Unestam T (1999b) Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus. Mycorrhiza 8:229–240

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Molina R (2000) Comparative anatomy of ectomycorrhizas synthesized on Douglas fir by Rhizopogon spp. and the hypogeous relative Truncocolumella citrina. New Phytol 147:389–400

    Article  Google Scholar 

  • Münzenberger B, Heilemann J, Strack D, Kottke I, Oberwinkler F (1990) Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce. Planta 182:142–148

    Article  Google Scholar 

  • Münzenberger B, Kottke I, Oberwinkler F (1995) Reduction of phenolics in mycorrhizas of Larix decidua Mill. Tree Physiol 15:191–196

    PubMed  Google Scholar 

  • Niemi K, Julkunen-Tiitto R, Häggman H, Sarjala T (2007) Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58:391–401

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma 59:367–373

    Google Scholar 

  • Oh KI, Melville LH, Peterson RL (1995) Comparative structural study of Quercus serrata and Q. acutissima formed by Pisolithus tinctorius and Hebeloma cylindrosporum. Trees 9:171–179

    Article  Google Scholar 

  • Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Peterson JB, Mabry TJ (1982) The flavonoids: advances in research. Chapman and Hall, London

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CABI publishing, Wallingford

    Google Scholar 

  • Piché Y, Fortin JA, Lafontaine JG (1981) Cytoplasmic phenols and polysaccharides in ectomycorrhizal and non-mycorrhizal short roots of pine. New Phytol 88:695–703

    Article  Google Scholar 

  • Rakić S, Povrenović D, Tešević V, Simić M, Maletić R (2006) Oak acorn, polyphenols and antioxidant activity in functional food. J Food Eng 74:416–423

    Article  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Ros Barceló A, Pedreño MA, Muñoz R, Sabater F (1989) Physiological significance of the binding of acidic isoperoxidases to cell wall of lupin. Physiol Plant 75:267–271

    Article  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using Toluidine Blue O. Stain Technol 48:247–249

    PubMed  CAS  Google Scholar 

  • Steel M, Knowls T, Bridle K, Simms EL (1993) Tannins and partial consumption of acorn: Implications for dispersal of oaks by seed predators. Am Midl Nat 130:229–238

    Article  Google Scholar 

  • Thomson J, Melville LH, Peterson RL (1989) Interaction between the ectomycorrhizal fungus Pisolithus tinctorius and root hairs of Picea mariana (Pinaceae). Am J Bot 76:632–636

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Mikolajewski S, Peipp H, Schmitt U, Schmidt J, Wray V, Strack D (1997) Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol 114:15–27

    PubMed  CAS  Google Scholar 

  • Weiss M, Schmidt J, Neumann D, Wray V, Christ R, Strack D (1999) Phenylpropanoids in mycorrhizas of the Pinaceae. Planta 208:491–502

    Article  CAS  Google Scholar 

  • Wong KKY, Montpetit D, Piché Y, Lei J (1990) Root colonization by four closely related genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton—comparative studies using electron microscopy. New Phytol 116:669–679

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported from the Japan Society for the Promotion of Science (#20255002) and also the National Research Foundation of Korea. We would like to sincerely thank emeritus professor Dr. Kwang-In Oh of Chonnam National University for the experiment material offer, Mr. Kye-Moon Wie for technical assistance, and Mr. Masanori Yasui of the Electron Microscope Center of Hokkaido University. The comments of two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Tamai.

Additional information

Communicated by R. Hampp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, N.C., Tamai, Y. Anatomical observation of polyphenol changes in epidermal cells during the development of Quercus acutissimaScleroderma verrucosum ectomycorrhizae. Trees 26, 301–310 (2012). https://doi.org/10.1007/s00468-011-0592-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0592-4

Keywords

Navigation