Skip to main content
Log in

X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The microfibril angle (MFA) distribution and the size of cellulose crystallites in isolated double cell walls of Norway spruce (Picea abies [L.] Karst.) tracheids were determined by synchrotron X-ray microdiffraction using the reflections 200 and 004. Samples were 25 μm thick longitudinal sections of earlywood from annual rings 6–18 of several stems. The asymmetric MFA distributions extended from −20° to 90°. The mean MFA of tangential cell walls decreased from an average of 24° into 19° from the pith to the bark. The mode of the MFA distribution was about 10° smaller than the mean MFA. The standard deviation of the MFA distribution varied between 18° and 25°. The mean MFA and the mode of the MFA distribution were larger in radial than in tangential cell walls. MFA distributions of mature wood samples exhibited a separate small peak at around 90°. The average width and length of cellulose crystallites varied between 28.9–30.9 Å and 192–284 Å, respectively. Both increased slightly as a function of annual ring number from the pith up to the 15th annual ring. An irrigation–fertilisation treatment of some of the stems resulted in longer cellulose crystallites compared to the untreated stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Funada R (2005) Review: The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA J 26:161–174

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull 12:431–438

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1992) Microfibrillar orientation of the innermost surface of conifer tracheid walls. IAWA Bull 13:411–417

    Google Scholar 

  • Abe H, Funada R, Imaizumi H, Ohtani J, Fukazawa K (1995) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197:418–421

    Article  CAS  Google Scholar 

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Anagnost SE, Mark RE, Hanna RB (2000) Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood Fiber Sci 32:81–87

    CAS  Google Scholar 

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of different measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris [L.]). Holzforschung 59:422–427

    Article  CAS  Google Scholar 

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Part II: The cellular microstructure. Holz Roh- Werkst 56:43–50

    Article  Google Scholar 

  • Bailey IW, Vestal MR (1937) The orientation of cellulose in the secondary wall of tracheary cells. J Arnold Arbor 18:185–195

    Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  • Batchelor WJ, Conn AB, Parker IH (1997) Measuring the fibril angle of fibres using confocal microscopy. Appita J 50:377–380

    CAS  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156

    Article  CAS  Google Scholar 

  • Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz Roh- Werkst 56:1–8

    Article  Google Scholar 

  • Bowling AJ, Amano Y, Lindstrom R, Brown RM Jr (2001) Rotation of cellulose ribbons during degradation with fungal cellulose. Cellulose 8:91–97

    Article  CAS  Google Scholar 

  • Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A 33:1345–1373

    Article  Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Nilsson T (2003) The structural organisation of the S-1 cell wall layer of Norway spruce tracheids. IAWA J 24:27–40

    Google Scholar 

  • Butterfield BG (ed) (1998) Microfibril Angle in wood, the proceeding of the IAWA/IUFRO international workshop on the significance of Microfibril Angle to wood quality. University of Canterbury Press, Christchurch

  • Cave ID (1966) Theory of X-ray measurement of microfibril angle in wood. Forest Prod J 16:37–42

    Google Scholar 

  • Cave ID, Hutt L (1969) The longitudinal Young’s modulus of Pinus Radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod J 44:43–48

    Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Cousins WJ (1972) Measurement of mean microfibril angles of wood tracheids. Wood Sci Technol 6:58

    Article  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LA (1991) The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci 23:290–295

    CAS  Google Scholar 

  • Donaldson LA, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644–653

    Article  Google Scholar 

  • Emons AMC, Mulder BM (1998) The making of the architecture of the plant cell wall: How cells exploit geometry. Proc Natl Acad Sci USA 95:7215–7219

    Article  PubMed  CAS  Google Scholar 

  • Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52:283–294

    Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, New York

    Google Scholar 

  • Gorisek Z, Torelli N (1999) Microfibril angle in juvenile, adult and compression wood of spruce and silver fir. Phyton-Ann Rei Bot 39:129–132

    Google Scholar 

  • Guitard D, Masse H, Yamamoto H, Okuyama T (1999) Growth stress generation: a new mechanical model of the dimensional change of wood cells during maturation. J Wood Sci 45:384–391

    Article  Google Scholar 

  • Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220

    Article  CAS  Google Scholar 

  • Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril arrangement recovers from DCB-induced disruption despite microtubule disorganization. Plant J 36:565–575

    Article  PubMed  CAS  Google Scholar 

  • Hori R, Müller M, Watanabe U, Lichtenegger HC, Fratzl P, Sugiyama J (2002) The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. J Mater Sci 37:4279–4284

    Article  CAS  Google Scholar 

  • Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373

    Article  CAS  Google Scholar 

  • Khalili S, Nilsson T, Daniel G (2001) The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids. Holz Roh- Werkst 58:439–447

    Article  Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci Technol 23:55–63

    Article  Google Scholar 

  • Koponen T, Karppinen T, Hæggström E, Saranpää P, Serimaa R (2005) The stiffness modulus in Norway spruce as a function of year ring. Holzforschung 59:451–455

    Article  CAS  Google Scholar 

  • Lichtenegger H, Müller M, Paris O, Riekel C, Fratzl P (1999a) Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. J Appl Cryst 32:1127–1133

    Article  CAS  Google Scholar 

  • Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999b) Cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269

    Article  PubMed  CAS  Google Scholar 

  • Lichtenegger H, Reiterer A, Tschegg SE, Müller M, Riekel C, Paris O, Fratzl P (2000) Microfibril angle and mechanical properties of wood. In: Spatz HC, Speck T (eds) Proceedings of the 3rd plant biomechanics conference. Georg Thieme, Stuttgart, New York, pp 436–442

  • Lichtenegger HC, Müller M, Wimmer R, Fratzl P (2003) Microfibril angles inside and outside crossfields of Norway spruce tracheids. Holzforschung 57:13–20

    Article  CAS  Google Scholar 

  • Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol Bull 44:178–190

    CAS  Google Scholar 

  • Lindstrom H, Evans JW, Verrill SP (1998) Influence of cambial age and growth conditions on microfibril angle in young Norway spruce (Picea abies [L.] Karst.). Holzforschung 52:573–581

    Article  Google Scholar 

  • Manwiller FG (1966) Senarmont compensation for determining fibril angles of cell wall layers. Forest Prod J 16:26–30

    Google Scholar 

  • Marton R, Rushton P, Sacco JS, Sumiya K (1972) Dimensions and ultrastructure in growing fibers. Tappi 55:1499–1504

    CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  PubMed  CAS  Google Scholar 

  • Mott L, Shaler M, Groom LH (1996) A technique to measure strain distributions in single wood pulp fibers. Wood Fiber Sci 28:429–437

    CAS  Google Scholar 

  • Mulder BM, Emons AMC (2001) A dynamical model for plant cell wall architecture formation. J Math Biol 42:261–289

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Hori R, Itoh T, Sugiyama J (2002) X-ray microbeam and electron diffraction experiments on developing xylem walls. Biomacromolecules 3:182–186

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18:79–85

    Google Scholar 

  • Page DH (1969) A method for determining the fibrillar angle in wood tracheids. J Microsci 90:137–143

    Google Scholar 

  • Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. Tappi 60:114–117

    Google Scholar 

  • Panshin AJ, Zeeuw C de (1980) Textbook of wood technology, 4th edn. McGraw-Hill Inc., New York

    Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualisation of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Persson K (2000) Micromechanical modelling of wood and fibre properties. PhD Thesis, Lund University, Sweden

  • Perämäki M, Nikinmaa E, Sevanto S, Ilvesniemi H, Siivola E, Hari P, Vesala T (2001) Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Phys 21:889–897

    Google Scholar 

  • Peura M, Müller M, Serimaa R, Vainio U, Sarén M-P, Saranpää P, Burghammer M (2005) Structural studies of single wood cell walls by synchrotron X-ray microdiffraction and polarised light microscopy. Nucl Inst Meth B 238:16–20

    Article  CAS  Google Scholar 

  • Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative Poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Peura M, Kölln K, Grotkopp I, Saranpää P, Müller M, Serimaa R (2007) The effect of axial strain on crystalline cellulose in Norway spruce. Wood Sci Technol doi: 10.1007/s00226-007-0141-x

  • Preston RD (1934) The organization of the cell wall of the conifer tracheid. Philos Trans R Soc B 224:131–173

    Article  Google Scholar 

  • Preston RD (1945) The fine structure of the wall of the conifer tracheid. I: The X-ray diagram of conifer wood. Proc R Soc B 133:327–348

    Google Scholar 

  • Preston RD (1946) The fine structure of the wall of the conifer tracheid. II: Optical properties of dissected walls of Pinus insignis. Proc R Soc B 134:202–218

    Article  Google Scholar 

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Phil Mag A 79:2173–2184

    CAS  Google Scholar 

  • Reiterer A, Lichtenegger H, Fratzl P, Stanzl-Tschegg SE (2001) Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. J Mater Sci 36:4681–4686

    Article  CAS  Google Scholar 

  • Riekel C (2000) New avenues in X-ray microbeam experiments. Rep Progr Phys 63:233–262

    Article  CAS  Google Scholar 

  • Roberts AW, Frost AO, Roberts EM, Haigler CH (2004) Roles of microtubules and cellulose microfibril assembly in the localization of secondary cell-wall deposition in developing tracheary elements. Protoplasma 224:217–229

    Article  PubMed  CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327:873–880

    Article  PubMed  CAS  Google Scholar 

  • Sarén M-P, Serimaa R, Andersson S, Paakkari T, Saranpää P, Pesonen E (2001) Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). J Struct Biol 136:101–109

    Article  PubMed  Google Scholar 

  • Sarén M-P, Serimaa R, Andersson S, Saranpää P, Keckes J, Fratzl P (2004) Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce. Trees 18:354–362

    Google Scholar 

  • Sarén M-P, Peura M, Serimaa R (2005) Interpretation of microfibril angle distributions in wood using microdiffraction experiments on single cells. J X-ray Sci Tech 13:191–197

    Google Scholar 

  • Sarén M-P, Serimaa R (2005) Determination of microfibril angle distribution by X-ray diffraction. Wood Sci Technol 40:445–460

    Article  CAS  Google Scholar 

  • Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) (2004) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Sedighi-Gilani M, Sunderland H, Navi P (2006) Within-fiber nonuniformities of microfibril angle. Wood Fiber Sci 38:132–138

    CAS  Google Scholar 

  • Senft JF, Bendtsen BA (1985) Measuring microfibrillar angles using light microscopy. Wood Fiber Sci 17:564–567

    Google Scholar 

  • Sobue N, Shibata Y, Mizusawa T (1992) X-ray measurement of lattice strain of cellulose crystals during the shrinkage of wood in the longitudinal direction. Mokuzai Gakkaishi 38:336–341

    CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Tejada A, Okuyama T, Yamamoto H, Yoshida M (1997) Reduction of growth stress in logs by direct heat treatment: assessment of a commercial-scale operation. For Prod J 47:86–93

    Google Scholar 

  • Vainio U, Andersson S, Serimaa R, Paakkari T, Saranpää P, Treacy M, Evertsen J (2002) Variation of microfibril angle between four provenances of Sitka spruce (Picea sitchensis [Bong.] Carr.). Plant Biol 4:27–33

    Article  Google Scholar 

  • Wardrop AB, Harada H (1965) The formation and structure of the cell wall in fibres and tracheids. J Exp Bot 16:356–371

    Article  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  PubMed  CAS  Google Scholar 

  • Wymer C, Lloyd C (1996) Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci 1:222–228

    Google Scholar 

  • Yamamoto H, Okuyama T, Yoshida M (1995) Generation process of growth stresses in cell walls VI. Analysis of growth stress generation by using a cell model having three layers (S1, S2, and I + P). Mokuzai Gakkaishi 41:1–8

    Google Scholar 

  • Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182

    CAS  Google Scholar 

  • Yamamoto H, Kojima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood. Part 1. Formulation of the longitudinal elasticity of an isolated wood fiber. Wood Sci Technol 36:55–74

    Article  CAS  Google Scholar 

  • Zweifel R, Item H, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Phys 21:869–877

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the European Synchrotron Radiation Facility (ESRF) for allocating the necessary experiment time for our study. Dr. Manfred Burghammer and Dr. Christian Riekel of ESRF are gratefully acknowledged for their assistance during the measurements at ID 13. The authors are grateful to Professor Sune Linder (SLU, Sweden) for allowing the material from Flakaliden to be used in this experiment and to Dr. Harri Mäkinen of the Finnish Forest Research Institute for providing information on the widths of the annual rings in the stems used in this study. The Academy of Finland is gratefully acknowledged for financing (grant number 104837).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marko Peura or Ritva Serimaa.

Additional information

Communicated by T. Hogetsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peura, M., Müller, M., Vainio, U. et al. X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees 22, 49–61 (2008). https://doi.org/10.1007/s00468-007-0168-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-007-0168-5

Keywords

Navigation