Skip to main content
Log in

A simplified protocol of regional citrate anticoagulation with phosphate-containing solutions in infants and children treated with continuous kidney replacement therapy

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Regional citrate anticoagulation (RCA) is the preferred modality of anticoagulation used in continuous kidney replacement therapy (CKRT) in adults and less extensively in children. Potential metabolic complications limit widespread use in infants, neonates, and in children with liver failure.

Methods

We report our experience with a simplified protocol in 50 critically ill children, infants, and neonates, some of them with liver failure, with commercially available solutions containing phosphorous and higher concentration of potassium and magnesium.

Results

RCA allowed attainment of a mean filter lifetime of 54.5 ± 18.2 h, 42.5% of circuits lasted more than 70 h, and scheduled change was the most frequent cause of CKRT interruption. Patient Ca++ and circuit Ca++ were maintained in the target range with mean values of 1.15 ± 0.13 mmol/l and 0.38 ± 0.07 mmol/l, respectively. No session had to be stopped because of metabolic complications. The most frequent complications were hyponatremia, hypomagnesemia, and metabolic acidosis mostly related to primary disease and critical illness. No session had to be stopped because of citrate accumulation (CA). Transitory CA occurred in 6 patients and was managed without requiring RCA interruption. No patients with liver failure presented CA episodes.

Conclusions

In our experience, RCA with commercially available solutions was easily applied and managed in critically ill children, even in patients with low weight or with liver failure. Solutions containing phosphate and higher concentrations of magnesium and potassium allowed reduction of metabolic derangement during CKRT. Prolonged filter life was ensured with no detrimental effects on patients and reduced staff workload.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on request.

References

  1. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators (2017) Epidemiology of acute kidney injury in critically Ill children and young adults. N Engl J Med 376:11–20. https://doi.org/10.1056/NEJMoa1611391

    Article  PubMed  Google Scholar 

  2. Chanchlani R, Nash DM, McArthur E, Zappitelli M, Archer V, Kowornu JP, Garg AX, GreenbergJH, Goldstein SL, Thabane L, Wald R (2019) Secular trends in incidence, modality, and mortality with dialysis receiving aki in children in Ontario. A Population-Based Cohort Study. Clin J Am Soc Nephrol 14:1288–1296. https://doi.org/10.2215/CJN.08250718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guzzo I, De Galasso L, Mir S, Bulut IK, Jankauskiene A, Burokiene V, Cvetkovic M, Kostic M, Bayazit AK, Yildizdas D, Schmitt CP, Paglialonga F, Montini G, Yilmaz E, Oh J, Weber L, Taylan C, Hayes W, Shroff R, Vidal E, Murer L, Mencarelli F, Pasini A, Teixeira A, Afonso AC, Drozdz D, Schaefer F, Picca S, ESCAPE Network (2019) Acute dialysis in children: results of a European survey. J Nephrol 32:445–451. https://doi.org/10.1007/s40620-019-00606-1

    Article  PubMed  Google Scholar 

  4. Goldstein SL (2011) Advances in pediatric renal replacement therapy for acute kidney injury. Semin Dial 24:187–191. https://doi.org/10.1111/j.1525-139X.2011.00834.x

    Article  PubMed  Google Scholar 

  5. De Galasso L, Guzzo I, Picca S (2020) Dialysis modalities for the management of pediatric acute kidney injury. Pediatr Nephrol 35:753–765. https://doi.org/10.1007/s00467-019-04213-x

    Article  PubMed  Google Scholar 

  6. Raina R, Chakraborty R, Davenport A, Brophy P, Sethi S, McCulloch M, Bunchman T, Yap HK (2021) Anticoagulation in patients with acute kidney injury undergoing kidney replacement therapy. Pediatr Nephrol 37:2303–2330. https://doi.org/10.1007/s00467-021-05020-z

    Article  PubMed  Google Scholar 

  7. Legrand M, Tolwani A (2021) Anticoagulation strategies in continuous renal replacement therapy. Semin Dial 34:416–422. https://doi.org/10.1111/sdi.12959

    Article  PubMed  Google Scholar 

  8. Kidney disease: Improving global outcomes (KDIGO) (2012) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2:1–138

    Google Scholar 

  9. Morabito S, Pistolesi V, Tritapepe L, Fiaccadori E (2014) Regional citrate anticoagulation for RRTs in critically ill patients with AKI. Clin J Am Soc Nephrol 9:2173–2188. https://doi.org/10.2215/CJN.01280214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bai M, Zhou M, He L, Ma F, Li Y, Yu Y, Wang P, Li L, Jing R, Zhao L, Sun S (2015) Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med 41:1098–2110. https://doi.org/10.1007/s00134-015-4099-0

    Article  CAS  Google Scholar 

  11. Liu C, Mao Z, Kang H, Hu J, Zhou F (2016) Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a meta-analysis with trial sequential anlysis of randomized controlled trials. Crit Care 20:144–157. https://doi.org/10.1186/s13054-016-1299-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meersch M, Kullmar M, Wempe C, Milles DK, Kluge S, Slowinski T, Marx G, Gerss J, Zarbock A, SepNet Critical Care Trials Group (2019) Regional citrate versus systemic heparin anticoagulation for continuous renal replacement therapy in critically ill patients with acute kidney injury (RICH) trial: study protocol for a multicentre randomized controlled trial. BMJ 9:e024411. https://doi.org/10.1136/bmjopen-2018-024411

  13. Bunchman TE, Maxvold NJ, Barnett J, Hutchings A, Benfield MR (2002) Pediatric hemofiltration: Normocarb dialysate solution with citrate anticoagulation. Pediatr Nephrol 17:150–154. https://doi.org/10.1007/s00467-001-0791-0

    Article  PubMed  Google Scholar 

  14. Chadha V, Garg U, Warady BA, Alon US (2002) Citrate clearance in children receiving continuous veno-venous renal replacement therapy. Pediatr Nephrol 17:819–824. https://doi.org/10.1007/s00467-002-0963-6

    Article  PubMed  Google Scholar 

  15. Bunchman TE, Maxvold NJ, Brophy PD (2003) Pediatric convective hemofiltration: normocarb replacement fluid and citrate anticoagulation. Am J Kidney Dis 42:1248–1252. https://doi.org/10.1053/j.ajkd.2003.08.026

    Article  PubMed  Google Scholar 

  16. Elhanan N, Skippen P, Nuthall G, Krahn G, Seear M (2004) Citrate anticoagulation in pediatric continuous venovenous hemofiltration. Pediatr Nephrol 19:208–212. https://doi.org/10.1007/s00467-003-1328-5

    Article  PubMed  Google Scholar 

  17. Musielak A, Warzywoda A, Wojtalik M, Kocinski B, Kroll P, Ostalska-Nowicka D, Zachwieja J (2016) Outcomes of continuous renal replacement therapy with regional citrate anticoagulation in small children after cardiac surgery: experience and protocol from a single center. Ther Apher Dial 20:639–644. https://doi.org/10.1111/1744-9987.12456

    Article  PubMed  Google Scholar 

  18. Rajasekaran S, Jones DP, Avent Y, Shaffer ML, Elbahlawan L, Henderson N, Barfield RC, Morrison RR, Tamburro RF (2010) Outcomes of hematopoietic stem cell transplant patients who received continuous renal replacement therapy in a pediatric oncology intensive care unit. Pediatr Crit Care Med 11:699–706. https://doi.org/10.1097/PCC.0b013e3181e32423

    Article  PubMed  Google Scholar 

  19. Liet JM, Allain-Lamay E, Gaillard-LeRoux B, Barriere F, Chenouard A, Dejode JM, Joram N (2014) Regional citrate anticoagulation for pediatric CRRT using integrated citrate software and physiological sodium concentration solutions. Pediatr Nephrol 29:1625–2163. https://doi.org/10.1007/s00467-014-2770-2

    Article  PubMed  Google Scholar 

  20. Persic V, VajdicTrampuz B, Medved B, Pavcnik M, Ponikvar R, Gubensek J (2019) Regional citrate anticoagulation for continuous renal replacement therapy in newborns and infants: Ficus on citrate accumulation. Artif Organs 44:497–503. https://doi.org/10.1111/aor.13619

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez K, Srivaths PR, Tal L, Watson MN, Riley AA, Himes RW, Desal MS, Braun MC, Akcan Arikan A (2017) Regional citrate anticoagulation for continuous renal replacement therapy in pediatric patients with liver failure. PLoS One 12:e0182134. https://doi.org/10.1371/journal.pone.0182134

  22. Nalesso F, Garzotto F, Cattarin L, Innico G, Gobbi L, Calò LA (2021) Impact of different hemodiafiltration solutions on ionemia in long-term CRRT. Int J Artif Organs 44:807–815. https://doi.org/10.1177/03913988211043203

    Article  CAS  PubMed  Google Scholar 

  23. Santiago MJ, López-Herce J, Urbano J, Bellón JM, del Castillo J, Carrillo A (2009) Hypophosphatemia and phosphate supplementation during continuous renal replacement therapy in children. Kidney Int 75:312–316. https://doi.org/10.1038/ki.2008.570

    Article  CAS  PubMed  Google Scholar 

  24. Pistolesi V, Zeppilli L, Fiaccadori E, Regolisti G, Tritapepe L, Morabito S (2019) Hypophosphatemia in critically ill patients with acute kidney injury on renal replacement therapies. J Nephrol 32:895–908. https://doi.org/10.1007/s40620-019-00648-5

    Article  CAS  PubMed  Google Scholar 

  25. Di Mario F, Regolisti G, Greco p, Maccari C, Superchi E, Morabito S, Pistolesi V, Fiaccadori E (2021) Prevention of hypomagnesemia in critically ill patients with acute kidney injuryon continuous kidney replacement therapy: the role of early supplementation and close monitoring. J Nephrol 34:1271-1279.https://doi.org/10.1007/s40620-020-00864-4

  26. Khwaja A (2012) KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin Pract 120:179–184

    Article  Google Scholar 

  27. Jetton JG, Askenazi DJ (2012) Update on acute kidney injury in the neonate. Curr Opin Pediatr 24:191–196. https://doi.org/10.1097/MOP.0b013e32834f62d5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8. https://doi.org/10.1097/01.PCC.0000149131.72248.E6

    Article  PubMed  Google Scholar 

  29. Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24:743–752

    Article  CAS  PubMed  Google Scholar 

  30. Raina R, Sethi S, Khooblall A, Kher V, Deshpande S, Yerigeri K, Pandya A, Nair N, Datla N, McCulloch M, Bunchman T, Davenport A (2022) Non-anticoagulation pediatric continuous renal replacement therapy methods to increase circuit life. Hemodial Int 26:147–159. https://doi.org/10.1111/hdi.13003

    Article  PubMed  Google Scholar 

  31. Miklaszewska M, Korohoda P, Zachwieja K, Kobylarz K, Stefanidis CJ, Sobczak A, Drożdż D (2017) Filter size not the anticoagulation method is the decisive factor in continuous renal replacement therapy circuit survival. Kidney Blood Press Res 42:327–337. https://doi.org/10.1159/000477609

    Article  CAS  PubMed  Google Scholar 

  32. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, Chiarenza F, Ricci Z, Goldstein SL (2014) Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 383:1807–1813. https://doi.org/10.1016/S0140-6736(14)60799-6

    Article  PubMed  Google Scholar 

  33. Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, Beckwith R, Matthews JN, Flecknell P, Lambert HJ (2014) Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol 29:1873–1881. https://doi.org/10.1007/s00467-014-2923-3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, Dill L, Tenney F, Feig D, Fathallah-Shaykh S (2016) Smaller circuits for smaller patients: improving renal support therapy with Aquadex. Pediatr Nephrol 31:853–860. https://doi.org/10.1007/s00467-015-3259-3

    Article  PubMed  Google Scholar 

  35. Goldstein SL, Vidal E, Ricci Z, Paglialonga F, Peruzzi L, Giordano M, Laforgia N, Ronco C (2022) Survival of infants treated with CKRT: comparing adapted adult platforms with Carpediem. Pediatr Nephrol 37:667–675. https://doi.org/10.1007/s00467-021-05180-y

    Article  PubMed  Google Scholar 

  36. Askenazi DJ, Goldstein SL, Koralkar R, Fortenberry J, Baum M, Hackbarth R, Blowey D, Bunchman TE, Brophy PD, Symons J, Chua A, Flores F, Somers MJ (2013) Continuous renal replacement therapy for children </=10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr 162:e583. https://doi.org/10.1016/j.jpeds.2012.08.044

  37. Gonwa TA, Wadei HM (2012) The challenges of providing renal replacement therapy in decompensated liver cirrhosis. Blood Purif 33:144–148. https://doi.org/10.1159/000334149

    Article  PubMed  Google Scholar 

  38. Betrosian A-P, Agarwal B, Douzinas EE (2007) Acute renal dysfunction in liver diseases. World J Gastroenterol 13:5552–5559. https://doi.org/10.3748/wjg.v13.i42.5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agarwal B, Shaw S, Shankar Hari M, Burroughs AK, Davenport A (2009) Continuous renal replacement therapy (CRRT) in patients with liver disease: is circuit life different? J Hepatol 51:504–509. https://doi.org/10.1016/j.jhep.2009.05.028

    Article  PubMed  Google Scholar 

  40. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T (2001) Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med 29:748–752. https://doi.org/10.1097/00003246-200104000-00010

    Article  CAS  PubMed  Google Scholar 

  41. Hendrix RJ, Hastings MC, Samarin M, Hudson JQ (2020) Predictors of hypophosphatemia and outcomes during Continuous Renal Replacement Therapy. Blood Purif 49:700–707. https://doi.org/10.1159/000507421

    Article  CAS  PubMed  Google Scholar 

  42. Hansen BA, Bruserud Ø (2018) Hypomagnesemia in critically ill patients. J Intensive Care 6:21. https://doi.org/10.1186/s40560-018-0291-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cappoli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 885 KB)

Supplementary Tables 1, 2, and 3 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappoli, A., Labbadia, R., Antonucci, L. et al. A simplified protocol of regional citrate anticoagulation with phosphate-containing solutions in infants and children treated with continuous kidney replacement therapy. Pediatr Nephrol 38, 3835–3844 (2023). https://doi.org/10.1007/s00467-023-05994-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05994-y

Keywords

Navigation