Skip to main content
Log in

Low agreement between various eGFR formulae in pediatric and young adult ADPKD patients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Young autosomal dominant polycystic kidney disease (ADPKD) patients are becoming the new target population for the development of new treatment options. Determination of a reliable equation for estimated glomerular filtration rate (eGFR) from early stages is needed with the promising potential interventional therapies.

Methods

Prospective and longitudinal study on a cohort of 68 genotyped ADPKD patients (age range 0–23 years) with long-term follow-up. Commonly used equations for eGFR were compared for their relative performance.

Results

The revised Schwartz formula (CKiD) showed a highly significant decline in eGFR with aging (− 3.31 mL/min/1.73 m2/year, P < 0.0001). The recently updated equation by the Schwartz group (CKiDU25) showed a smaller (− 0.90 mL/min/1.73 m2/year) but significant (P = 0.001) decline in eGFR with aging and also showed a significant sex difference (P < 0.0001), not observed by the other equations. In contrast, the full age spectrum (FAS) equations (FAS-SCr, FAS-CysC, and the combined) showed no age and sex dependency. The prevalence of hyperfiltration is highly dependent on the formula used, and the highest prevalence was observed with the CKiD Equation (35%).

Conclusions

The most widely used methods to calculate eGFR in ADPKD children (CKiD and CKiDU25 equations) were associated with unexpected age or sex differences. The FAS equations were age- and sex-independent in our cohort. Hence, the switch from the CKiD to CKD-EPI equation at the transition from pediatric to adult care causes implausible jumps in eGFR, which could be misinterpreted. Having reliable methods to calculate eGFR is indispensable for clinical follow-up and clinical trials.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article cannot be shared publicly due to the privacy of the individuals who participated in the study. The data will be shared on reasonable request to the corresponding author.

Abbreviations

ADPKD:

Autosomal dominant polycystic kidney disease

CKD:

Chronic kidney disease

TKV:

Total kidney volume

EGFR:

Estimated glomerular filtration rate

FAS:

Full age spectrum

SCr:

Serum creatinine

SCysC:

Serum cystatin C

References

  1. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301. https://doi.org/10.1016/S0140-6736(07)60601-1

    Article  PubMed  Google Scholar 

  2. Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, Dudley J, Emma F, Konrad M, Harris T, Harris PC, König J, Liebau MC, Marlais M, Mekahli D, Metcalfe AM, Oh J, Perrone RD, Sinha MD, Titieni A, Torra R, Weber S, Winyard PJD, Schaefer F (2019) International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 15:713–726. https://doi.org/10.1038/s41581-019-0155-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fick-Brosnahan GM, Tran ZV, Johnson AM, Strain JD, Gabow PA (2001) Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int 59:1654–1662. https://doi.org/10.1046/j.1523-1755.2001.0590051654

    Article  CAS  PubMed  Google Scholar 

  4. Massella L, Mekahli D, Paripović D, Prikhodina L, Godefroid N, Niemirska A, Ağbaş A, Kalicka K, Jankauskiene A, Mizerska-Wasiak M, Afonso AC, Salomon R, Deschênes G, Ariceta G, Özçakar ZB, Teixeira A, Duzova A, Harambat J, Seeman T, Hrčková G, Lungu AC, Papizh S, Peco-Antic A, De Rechter S, Giordano U, Kirchner M, Lutz T, Schaefer F, Devuyst O, Wühl E, Emma F (2018) Prevalence of Hypertension in Children with Early-Stage ADPKD. Clin J Am Soc Nephrol 13:874–883. https://doi.org/10.2215/CJN.11401017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shamshirsaz AA, Reza Bekheirnia M, Kamgar M, Johnson AM, McFann K, Cadnapaphornchai M, Nobakhthaghighi N, Schrier RW (2005) Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int 68:2218–2224. https://doi.org/10.1111/j.1523-1755.2005.00678.x

    Article  PubMed  Google Scholar 

  6. Cadnapaphornchai MA, Masoumi A, Strain JD, McFann K, Schrier RW (2011) Magnetic resonance imaging of kidney and cyst volume in children with ADPKD. Clin J Am Soc Nephrol 6:369–376. https://doi.org/10.2215/CJN.03780410

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu ASL, Shen C, Landsittel DP, Grantham JJ, Cook LT, Torres VE, Chapman AB, Bae KT, Mrug M, Harris PC, Rahbari-Oskoui FF, Shi T, Bennett WM, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2019) Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int 95:1253–1261. https://doi.org/10.1016/j.kint.2018.12.023

    Article  PubMed  PubMed Central  Google Scholar 

  8. Janssens P, Jouret F, Bammens B et al (2020) Implications of early diagnosis of autosomal dominant polycystic kidney disease: A post hoc analysis of the TEMPO 3:4 trial. Sci Rep 10:4294. https://doi.org/10.1038/s41598-020-61303-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornec-Le Gall E, Audrézet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, Morin MP, Moal MC, Dantal J, Wehbe B, Perrichot R, Frouget T, Vigneau C, Potier J, Jousset P, Guillodo MP, Siohan P, Terki N, Sawadogo T, Legrand D, Menoyo-Calonge V, Benarbia S, Besnier D, Longuet H, Férec C, Le Meur Y (2016) The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 27:942–951. https://doi.org/10.1681/ASN.2015010016

    Article  CAS  PubMed  Google Scholar 

  10. De Rechter S, Bammens B, Schaefer F, Liebau MC, Mekahli D (2018) Unmet needs and challenges for follow-up and treatment of autosomal dominant polycystic kidney disease: the paediatric perspective. Clin Kidney J 11:i14–i26. https://doi.org/10.1093/ckj/sfy088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, Schrier RW (2011) Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6:2439–2443. https://doi.org/10.2215/CJN.01010211

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H (2015) A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10:382–389. https://doi.org/10.2215/CJN.03080314

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, Sterner G, Bäck SE, SBU GFR Review Group (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424. https://doi.org/10.1053/j.ajkd.2014.04.010

    Article  PubMed  Google Scholar 

  14. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pottel H, Björk J, Bökenkamp A, Berg U, Åsling-Monemi K, Selistre L, Dubourg L, Hansson M, Littmann K, Jones I, Sjöström P, Nyman U, Delanaye P (2019) Estimating glomerular filtration rate at the transition from pediatric to adult care. Kidney Int 95:1234–1243. https://doi.org/10.1016/j.kint.2018.12.020

    Article  PubMed  Google Scholar 

  16. Pottel H, Björk J, Delanaye P, Nyman U (2022) Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol 37:2213–2216. https://doi.org/10.1007/s00467-022-05429-0

    Article  PubMed  Google Scholar 

  17. Pierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ (2021) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956. https://doi.org/10.1016/j.kint.2020.10.047

    Article  CAS  PubMed  Google Scholar 

  18. Hoste L, Dubourg L, Selistre L, De Souza VC, Ranchin B, Hadj-Aïssa A, Cochat P, Martens F, Pottel H (2014) A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant 29:1082–1091. https://doi.org/10.1093/ndt/gft277

    Article  CAS  PubMed  Google Scholar 

  19. Pottel H, Björk J, Courbebaisse M, Couzi L, Ebert N, Eriksen BO, Dalton RN, Dubourg L, Gaillard F, Garrouste C, Grubb A, Jacquemont L, Hansson M, Kamar N, Lamb EJ, Legendre C, Littmann K, Mariat C, Melsom T, Rostaing L, Rule AD, Schaeffner E, Sundin PO, Turner S, Bökenkamp A, Berg U, Åsling-Monemi K, Selistre L, Åkesson A, Larsson A, Nyman U, Delanaye P (2020) Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate : A Cross-sectional Analysis of Pooled Data. Ann Intern Med 174:183–191. https://doi.org/10.7326/M20-4366

    Article  PubMed  Google Scholar 

  20. Björk J, Nyman U, Delanaye P, Grubb A, Larsson A, Vranken L, Åkesson A, Pottel H (2020) A novel method for creatinine adjustment makes the revised Lund-Malmö GFR estimating equation applicable in children. Scand J Clin Lab Invest 80:456–463. https://doi.org/10.1080/00365513.2020.1774641

    Article  CAS  PubMed  Google Scholar 

  21. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Goffin K, Pauwels S, Mariat C, Flamant M, Ebert N (2017) Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant 32:497–507. https://doi.org/10.1093/ndt/gfw425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodríguez RM, Luis-Lima S, Fernandez JM et al (2022) Estimated GFR in autosomal dominant polycystic kidney disease: errors of an unpredictable method. J Nephrol 35:2109–2118. https://doi.org/10.1007/s40620-022-01286-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziegelasch N, Vogel M, Müller E, Tremel N, Jurkutat A, Löffler M, Terliesner N, Thiery J, Willenberg A, Kiess W, Dittrich K (2019) Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr Nephrol 34:449–457. https://doi.org/10.1007/s00467-018-4087-z

    Article  PubMed  Google Scholar 

  25. Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Japanese Society for Pediatric Nephrology, the Committee of Measures for Pediatric CKD (2012) Is the new Schwartz equation derived from serum creatinine and body length suitable for evaluation of renal function in Japanese children? Eur J Pediatr 171:1401–1404. https://doi.org/10.1007/s00431-012-1772-y

    Article  PubMed  Google Scholar 

  26. Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Kitagawa T (2011) Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study. Clin Exp Nephrol 15:694–699. https://doi.org/10.1007/s10157-011-0452-y

    Article  CAS  PubMed  Google Scholar 

  27. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M (2014) Creatinine-based equation to estimate the glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol 18:626–633. https://doi.org/10.1007/s10157-013-0856-y

    Article  CAS  PubMed  Google Scholar 

  28. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992. https://doi.org/10.1053/j.ajkd.2008.12.034

    Article  CAS  PubMed  Google Scholar 

  29. Uemura O, Yokoyama H, Ishikura K, Gotoh Y, Sato H, Sugiyama H, Honda M, Matsuo S (2017) Performance in adolescents of the two Japanese serum creatinine based estimated glomerular filtration rate equations, for adults and paediatric patients: A study of the Japan Renal Biopsy Registry and Japan Kidney Disease Registry from 2007 to 2013. Nephrology 22:494–497. https://doi.org/10.1111/nep.12982

    Article  CAS  PubMed  Google Scholar 

  30. Wong H, Vivian L, Weiler G, Filler G (2004) Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 43:624–628. https://doi.org/10.1053/j.ajkd.2003.12.026

    Article  PubMed  Google Scholar 

  31. Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G (2022) Glomerular hyperfiltration. Nat Rev Nephrol 18:435–451. https://doi.org/10.1038/s41581-022-00559-y

    Article  PubMed  Google Scholar 

  32. Pottel H, Adebayo OC, Nkoy AB, Delanaye P (2022) Glomerular hyperfiltration: part 1 - defining the threshold - is the sky the limit? Pediatr Nephrol. https://doi.org/10.1007/s00467-022-05827-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Adebayo OC, Nkoy AB, van den Heuvel LP, Labarque V, Levtchenko E, Delanaye P, Pottel H (2022) Glomerular hyperfiltration: part 2-clinical significance in children. Pediatr Nephrol. https://doi.org/10.1007/s00467-022-05826-5

    Article  PubMed  Google Scholar 

  34. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2010) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6:274–280. https://doi.org/10.2215/CJN.02760310

    Article  PubMed  Google Scholar 

  35. Sharma AP, Yasin A, Garg AX, Filler G (2011) Diagnostic accuracy of cystatin C-based eGFR equations at different GFR levels in children. Clin J Am Soc Nephrol 6:1599–1608. https://doi.org/10.2215/CJN.10161110

    Article  CAS  PubMed  Google Scholar 

  36. Webster-Clark M, Jaeger B, Zhong Y, Filler G, Alvarez-Elias A, Franceschini N, Díaz-González de Ferris ME (2018) Low agreement between modified-Schwartz and CKD-EPI eGFR in young adults: a retrospective longitudinal cohort study. BMC Nephrol 19:194. https://doi.org/10.1186/s12882-018-0995-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Sarah Kerselaers and Ariadne van Hulle. Above all, the authors wish to thank the participating children and their parents, as well as the nurses involved in the care of the patients.

Funding

This work was supported by the Research Foundation Flanders (FWO) (G0C8920N) (1804123N) and UZ Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalila Mekahli.

Ethics declarations

Ethics approval

The study was approved by the local ethical board (Ethical Committee Research KU/UZ Leuven, S59500) and in accordance with the Declaration of Helsinki. Written informed consent was obtained from either the parents or patients.

Conflict of interest

The Research Foundation Flanders (F.W.O.) supports Pieter Schellekens. DM reports research grants from Otsuka and serves in advisory boards for Otsuka, Sanofi Genzyme and Reata, all outside the submitted work and all paid to her institutions UZ Leuven and KU Leuven, Belgium. The other authors have no conflict of interest to declare related to this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 338 KB)

467_2023_5926_MOESM2_ESM.pdf

Supplementary file2 (PDF 463 KB) Supplementary Table S1. Formulas for the different eGFR equations [e.g. (PDF)]. Supplementary Table S2. Results of the Bland-Altman correlation analysis comparing FAS-Age with the different equations [e.g. (PDF)].

467_2023_5926_MOESM3_ESM.pptx

Supplementary file3 (PPTX 183 KB) Supplementary Figure 1 (a) Bland-Altman plot of the difference (FAS-Age – CKiD) vs. the mean (FAS-Age + CKiD)/2. (b) Bland-Altman plot of the difference (FAS-Age – CkiDU25) vs. the mean (FAS-Age + CKiDU25)/2. (c) Bland-Altman plot of the difference (FAS-Age – FAS-Height) vs. the mean (FAS-Age + FAS-Height)/2. (d) Bland-Altman plot of the difference (FAS-Age – EFKC) vs. the mean (FAS-Age + EFKC)/2. (e) Bland-Altman plot of the difference (FAS-Age – LMR18) vs. the mean (FAS-Age + LMR18)/2. (f) Bland-Altman plot of the difference (FAS-Age – CKD-EPI40) vs. the mean (FAS-Age + CKD-EPI40)/2. (g) Bland-Altman plot of the difference (FAS-Age – FAS-CysC) vs. the mean (FAS-Age + FAS-CysC)/2. (h) Bland-Altman plot of the difference (FAS-Age – FAS-combi) vs. the mean (FAS-Age + FAS-combi)/2. (i) Bland-Altman plot of the difference (FAS-Age – FAS-Combi-Height) vs. the mean (FAS-Age + FAS-Combi-Height)/2 [e.g. (PDF)].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schellekens, P., Verjans, M., Janssens, P. et al. Low agreement between various eGFR formulae in pediatric and young adult ADPKD patients. Pediatr Nephrol 38, 3043–3053 (2023). https://doi.org/10.1007/s00467-023-05926-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05926-w

Keywords

Navigation