Skip to main content

Advertisement

Log in

Biomarkers for prediction of acute kidney injury in pediatric patients: a systematic review and meta-analysis of diagnostic test accuracy studies

  • Systematic Review/Meta-analysis
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Severity of acute kidney injury (AKI) confers higher odds of mortality. Timely recognition and early initiation of preventive measures may help mitigate the injury further. Novel biomarkers may aid in the early detection of AKI. The utility of these biomarkers across various clinical settings in children has not been evaluated systematically.

Objective

To synthesize the currently available evidence on different novel biomarkers for the early diagnosis of AKI in pediatric patients.

Data sources

We searched four electronic databases (PubMed, Web of Science, Embase, and Cochrane Library) for studies published between 2004 and May 2022.

Study eligibility criteria

Cohort and cross-sectional studies evaluating the diagnostic performance of biomarkers in predicting AKI in children were included.

Participants and interventions

Participants in the study included children (aged less than 18 years) at risk of AKI.

Study appraisal and synthesis methods

We used the QUADAS-2 tool for the quality assessment of the included studies. The area under the receiver operating characteristics (AUROC) was meta-analyzed using the random-effect inverse-variance method. Pooled sensitivity and specificity were generated using the hierarchical summary receiver operating characteristic (HSROC) model.

Results

We included 92 studies evaluating 13,097 participants. Urinary NGAL and serum cystatin C were the two most studied biomarkers, with summary AUROC of 0.82 (0.77–0.86) and 0.80 (0.76–0.85), respectively. Among others, urine TIMP-2*IGFBP7, L-FABP, and IL-18 showed fair to good predicting ability for AKI. We observed good diagnostic performance for predicting severe AKI by urine L-FABP, NGAL, and serum cystatin C.

Limitations

Limitations were significant heterogeneity and lack of well-defined cutoff value for various biomarkers.

Conclusions and implications of key findings

Urine NGAL, L-FABP, TIMP-2*IGFBP7, and cystatin C showed satisfactory diagnostic accuracy in the early prediction of AKI. To further improve the performance of biomarkers, they need to be integrated with other risk stratification models.

Systematic review registration

PROSPERO (CRD42021222698).

Graphical Abstract

A higher resolution version of the Graphical abstract is available as “Supplementary information"

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data used in this manuscript is already available in public domain.

References

  1. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators (2017) Epidemiology of acute kidney injury in critically Ill children and young adults. N Engl J Med 376:11–20. https://doi.org/10.1056/NEJMoa1611391

    Article  PubMed  Google Scholar 

  2. Macedo E, Cerdá J, Hingorani S, Hou J, Bagga A, Burdmann EA, Rocco VM, Mehta LR (2018) Recognition and management of acute kidney injury in children: the ISN 0by25 Global Snapshot study. PLoS One 13:e0196586. https://doi.org/10.1371/journal.pone.0196586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, Goldstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561. https://doi.org/10.2215/CJN.01900214

    Article  PubMed  PubMed Central  Google Scholar 

  4. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL; Acute Kidney Injury Advisory Group of the American Society of Nephrology (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8:1482–1493. https://doi.org/10.2215/CJN.00710113

    Article  Google Scholar 

  5. Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE (2011) The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 79:1361–1369. https://doi.org/10.1038/ki.2011.42

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667. https://doi.org/10.1038/ki.2013.349

    Article  PubMed  Google Scholar 

  7. Goldstein SL (2018) The renal angina index to predict acute kidney injury: are adults just large children? Kidney Int Rep 3:516–518. https://doi.org/10.1016/j.ekir.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17:R207. https://doi.org/10.1186/cc13015

    Article  PubMed  PubMed Central  Google Scholar 

  9. Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120. https://doi.org/10.1016/S2352-4642(17)30181-5

    Article  Google Scholar 

  10. Meena J, Kumar J, Thomas CC, Dawman L, Tiewsoh K, Yadav M, Mathew G (2022) Diagnostic accuracy of renal angina index alone or in combination with biomarkers for predicting acute kidney injury in children. Pediatr Nephrol 37:1263–1275. https://doi.org/10.1007/s00467-021-05368-2

    Article  PubMed  Google Scholar 

  11. Goldstein SL, Krallman KA, Kirby C, Roy JP, Collins M, Fox K, Schmerge A, Wilder S, Gerhardt B, Chima R, Basu RK, Chawla L, Fei L (2022) Integration of the renal angina index and urine neutrophil gelatinase-associated lipocalin improves severe acute kidney injury prediction in critically ill children and young adults. Kidney Int Rep 7:1842–1849. https://doi.org/10.1016/j.ekir.2022.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Cavalcante CTMB, Cavalcante MB, Castello Branco KMP, Chan T, Maia ICL, Pompeu RG, de Oliveira Telles AC, Brito AKM, Libório AB (2022) Biomarkers of acute kidney injury in pediatric cardiac surgery. Pediatr Nephrol 37:61–78. https://doi.org/10.1007/s00467-021-05094-9

    Article  PubMed  Google Scholar 

  13. Sandokji I, Greenberg JH (2020) Novel biomarkers of acute kidney injury in children: an update on recent findings. Curr Opin Pediatr 32:354–359. https://doi.org/10.1097/MOP.0000000000000891

    Article  CAS  PubMed  Google Scholar 

  14. Filho LT, Grande AJ, Colonetti T, Della ÉSP, da Rosa MI (2017) Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr Nephrol 32:1979–1988. https://doi.org/10.1007/s00467-017-3704-6

    Article  PubMed  Google Scholar 

  15. Kashani K, Al-Khafaji A, Ardiles T, Artigas A et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25. https://doi.org/10.1186/cc12503

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ostermann M, Zarbock A, Goldstein S, Kashani K et al (2020) Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: a consensus statement. JAMA Netw Open 3:e2019209. https://doi.org/10.1001/jamanetworkopen.2020.19209

    Article  PubMed  Google Scholar 

  17. Salameh J-P, Bossuyt PM, McGrath TA, Thombs BD et al (2020) Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 370:m2632. https://doi.org/10.1136/bmj.m2632

    Article  PubMed  Google Scholar 

  18. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C (2016) PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol 75:40–46. https://doi.org/10.1016/j.jclinepi.2016.01.021

    Article  PubMed  Google Scholar 

  19. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035. https://doi.org/10.1038/sj.ki.5002231

    Article  CAS  PubMed  Google Scholar 

  20. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Network AKI (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31. https://doi.org/10.1186/cc5713

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2:1–138

    Google Scholar 

  22. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  Google Scholar 

  23. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y (2010) Cochrane Handbook for Systematic Reviews of Diagnostic test Accuracy y Version 1.0. The Cochrane Collaboration. https://training.cochrane.org/handbook-diagnostic-test-accuracy/archive/v1. Accessed 6 Aug 2021

  24. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, Gill K, Walker S, MacDonald K, Hiebert BM, Arora RC, Rigatto C (2015) Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: A Meta-analysis. Am J Kidney Dis 66:993–1005. https://doi.org/10.1053/j.ajkd.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Dragun D, Haase M (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery–a prospective cohort study. Crit Care Med 37:553–560. https://doi.org/10.1097/CCM.0b013e318195846e

    Article  CAS  PubMed  Google Scholar 

  26. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893. https://doi.org/10.1016/j.jclinepi.2005.01.016

    Article  PubMed  Google Scholar 

  27. Van den Eynde J, Schuermans A, Verbakel JY, Gewillig M, Kutty S, Allegaert K, Mekahli D (2022) Biomarkers of acute kidney injury after pediatric cardiac surgery: a meta-analysis of diagnostic test accuracy. Eur J Pediatr 181:1909–1921. https://doi.org/10.1007/s00431-022-04380-4

    Article  CAS  PubMed  Google Scholar 

  28. Albert C, Zapf A, Haase M, Röver C et al (2020) Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: A Systematic review and meta-analysis. Am J Kidney Dis 76:826-841.e1. https://doi.org/10.1053/j.ajkd.2020.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fazel M, Sarveazad A, Mohamed Ali K, Yousefifard M, Hosseini M (2020) Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-Analysis. Arch Acad Emerg Med 8:e44

    PubMed  PubMed Central  Google Scholar 

  30. Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, Joannidis M (2018) Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 44:323–336. https://doi.org/10.1007/s00134-018-5126-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakhjavan-Shahraki B, Yousefifard M, Ataei N, Baikpour M, Ataei F, Bazargani B, Abbasi A, Ghelichkhani P, Javidilarijani F, Hosseini M (2017) Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol 18:120. https://doi.org/10.1186/s12882-017-0539-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yousefifard M, Ahmadzadeh K, Toloui A, Ahmadzadeh H, MadaniNeishaboori A, RafieiAlavi SN, Ghelichkhani P, Tavallaei MJ, Safari S, Ataei N, Hosseini M (2022) Assessing the value of serum and urinary interleukins for diagnosis of acute kidney injury in children and adolescents: a systematic review and meta-analysis. Pract Lab Med 28:e00262. https://doi.org/10.1016/j.plabm.2022.e00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. You R, Zheng H, Xu L, Ma T, Chen G, Xia P, Fan X, Ji P, Wang L, Chen L (2021) Decreased urinary uromodulin is potentially associated with acute kidney injury: a systematic review and meta-analysis. J Intensive Care 9:70. https://doi.org/10.1186/s40560-021-00584-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuo J, Akison LK, Chatfield MD, Trnka P, Moritz KM (2022) Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy. J Nephrol 35:2001–2014. https://doi.org/10.1007/s40620-022-01307-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Izadi A, Yousefifard M, Nakhjavan-Shahraki B, Aikpour M et al (2016) Value of plasma/serum neutrophil gelatinase-associated lipocalin in detection of pediatric acute kidney injury; a systematic review and meta-analysis. Int J Pediatr 4:3815–3836

    CAS  Google Scholar 

  36. Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58:356–365. https://doi.org/10.1053/j.ajkd.2011.02.389

    Article  CAS  PubMed  Google Scholar 

  37. Chiang T-H, Yo C-H, Lee GH, Mathew A, Sugaya T, Li WY, Lee CC (2022) Accuracy of liver-type fatty acid-Binding protein in predicting acute kidney injury: a Meta-Analysis. J Appl Lab Med 7:421–436. https://doi.org/10.1093/jalm/jfab092

    Article  PubMed  Google Scholar 

  38. Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, Wolf B, Goebel U, Schwer CI, Rosenberger P, Haeberle H, Görlich D, Kellum JA, Meersch M; RenalRIPC Investigators (2015) Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313:2133–2141. https://doi.org/10.1001/jama.2015.4189

    Article  CAS  PubMed  Google Scholar 

  39. Peres LAB, da Cunha Júnior AD, Schäfer AJ, Silva AL, Gaspar AD, Scarpari DF, Alves JB, GirelliNeto R, Oliveira TF (2013) Biomarkers of acute kidney injury. J Bras Nefrol 35:229–236. https://doi.org/10.5935/0101-2800.20130036

    Article  PubMed  Google Scholar 

  40. Husain-Syed F, Reis T, Kashani K, Ronco C (2022) Advances in laboratory detection of acute kidney injury. Pract Lab Med 31:e00283. https://doi.org/10.1016/j.plabm.2022.e00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Md Ralib A, Mat Nor MB, Pickering JW (2017) Plasma neutrophil gelatinase-associated lipocalin diagnosed acute kidney injury in patients with systemic inflammatory disease and sepsis. Nephrology (Carlton) 22:412–419. https://doi.org/10.1111/nep.12796

    Article  CAS  PubMed  Google Scholar 

  42. Albert C, Albert A, Kube J, Bellomo R, Wettersten N, Kuppe H, Westphal S, Haase M, Haase-Fielitz A (2018) Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg 155:2441–2452. https://doi.org/10.1016/j.jtcvs.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  43. Huen SC, Parikh CR (2015) Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol 309:F406–F413. https://doi.org/10.1152/ajprenal.00682.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hassinger AB, Backer CL, Lane JC, Haymond S, Wang D, Wald EL (2012) Predictive power of serum cystatin C to detect acute kidney injury and pediatric-modified RIFLE class in children undergoing cardiac surgery. Pediatr Crit Care Med 13:435–440. https://doi.org/10.1097/PCC.0b013e318238b43c

    Article  PubMed  Google Scholar 

  45. Menon S, Goldstein SL, Mottes T, Fei L, Kaddourah A, Terrell T, Arnold P, Bennett MR, Basu RK (2016) Urinary biomarker incorporation into the renal angina index early in intensive care unit admission optimizes acute kidney injury prediction in critically ill children: a prospective cohort study. Nephrol Dial Transplant 31:586–594. https://doi.org/10.1093/ndt/gfv457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JM had full access to all of the data in the study and will be responsible for the integrity and accuracy of the data analysis.

Study concept and design: JM, JK, CCT.

Acquisition, analysis, or interpretation of data: CCT, JM, JK, AB, GM.

Drafting of the manuscript: JM, JK, GM, CCT.

Critical manuscript revision for important intellectual content: JM, AB, JK.

Statistical analysis: JM, JK, GM.

Administrative, technical, or material support: CCT, GM, JM.

Study supervision: AB, JK, JM.

Corresponding author

Correspondence to Arvind Bagga.

Ethics declarations

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 293 KB)

Supplementary file2 (PDF 1.65 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, J., Thomas, C.C., Kumar, J. et al. Biomarkers for prediction of acute kidney injury in pediatric patients: a systematic review and meta-analysis of diagnostic test accuracy studies. Pediatr Nephrol 38, 3241–3251 (2023). https://doi.org/10.1007/s00467-023-05891-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05891-4

Keywords

Navigation