Skip to main content

Advertisement

Log in

Risk factors for severe acute kidney injury after pediatric hematopoietic cell transplantation

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Acute kidney injury (AKI) is common after hematopoietic cell transplantation (HCT) and is associated with poorer outcomes. Risk factors for AKI after pediatric HCT are not fully understood. The study objective was to assess unique risk factors for AKI in the HCT population and evaluate post-HCT AKI patterns.

Methods

We conducted a retrospective cohort study of patients < 21 years of age who underwent HCT at Seattle Children’s Hospital/Fred Hutchinson Cancer Center from September 2008 to July 2017 (n = 484). We defined AKI using KDIGO criteria. We collected demographics, baseline HCT characteristics, post-HCT complications, and mortality. Multinomial logistic regression was used to estimate association between AKI and potential risk factors. We used adjusted Cox proportional hazard ratios to evaluate differences in mortality.

Results

One hundred and eighty-six patients (38%) developed AKI. Seventy-nine (42%) had severe AKI and 27 (15%) required kidney replacement therapy. Fluid overload was common in all groups and 67% of those with severe AKI had > 10% fluid overload. Nephrology was consulted in less than 50% of those with severe AKI. In multivariable analysis, risk of severe AKI was lower in those taking a calcineurin inhibitor (CNI). Risk of death was higher in severe AKI compared to no AKI (RR 4.6, 95% CI 2.6–8.1).

Conclusions

AKI and fluid overload are common in pediatric patients after HCT. Severe AKI occurred less often with CNI use and was associated with higher mortality. Future interventions to reduce AKI and its associated complications such as fluid overload are approaches to reducing morbidity and mortality after HCT.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Organ Procurement and Transplantation Network (2021) US Department of Health and Human Services. In: https://optn.transplant.hrsa.gov/data/view-data-reports/national_data/

  2. Thakar MS, Broglie L, Logan B, Artz A et al (2019) The Hematopoietic Cell Transplant Comorbidity Index predicts survival after allogeneic transplant for nonmalignant diseases. Blood 133:754–762. https://doi.org/10.1182/blood-2018-09-876284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Styczyński J, Tridello G, Koster L, Iacobelli S et al (2020) Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant 55:126–136. https://doi.org/10.1038/s41409-019-0624-z

    Article  PubMed  Google Scholar 

  4. Kizilbash SJ, Kashtan CE, Chavers BM, Cao Q et al (2016) Acute kidney injury and the risk of mortality in children undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 22:1264–1270. https://doi.org/10.1016/j.bbmt.2016.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koh KN, Sunkara A, Kang G, Sooter A et al (2018) Acute kidney injury in pediatric patients receiving allogeneic hematopoietic cell transplantation: incidence, risk factors, and outcomes. Biol Blood Marrow Transplant 24:758–764. https://doi.org/10.1016/j.bbmt.2017.11.021

    Article  PubMed  Google Scholar 

  6. Raina R, Abu-Arja R, Sethi S, Dua R et al (2022) Acute kidney injury in pediatric hematopoietic cell transplantation: critical appraisal and consensus. Pediatr Nephrol 37:1179–1203. https://doi.org/10.1007/s00467-022-05448-x

    Article  PubMed  Google Scholar 

  7. Gurbanov A, Gülhan B, Kuşkonmaz B, Okur FV et al (2022) Predictors of kidney complications and analysis of hypertension in children with allogeneic hematopoietic stem cell transplantation. Pediatr Nephrol. https://doi.org/10.1007/s00467-022-05599-x

    Article  PubMed  Google Scholar 

  8. Hirano D, Kakegawa D, Miwa S, Umeda C et al (2020) Independent risk factors and long-term outcomes for acute kidney injury in pediatric patients undergoing hematopoietic stem cell transplantation: a retrospective cohort study. BMC Nephrol 21:373. https://doi.org/10.1186/s12882-020-02045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piñana JL, Perez-Pitarch A, Garcia-cadenas I, Barba P et al (2017) A time-to-event model for acute kidney injury after reduced-intensity conditioning stem cell transplantation using a tacrolimus- and sirolimus-based graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant 23:1177–1185. https://doi.org/10.1016/j.bbmt.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  10. Rajpal JS, Patel N, Vogel RI, Kashtan CE et al (2013) Improved survival over the last decade in pediatric patients requiring dialysis after hematopoietic cell transplantation. Biol Blood Marrow Transplant 19:661–665. https://doi.org/10.1016/j.bbmt.2012.12.012

    Article  PubMed  Google Scholar 

  11. Wu NL, Hingorani S (2021) Outcomes of kidney injury including dialysis and kidney transplantation in pediatric oncology and hematopoietic cell transplant patients. Pediatr Nephrol 36:2675–2686. https://doi.org/10.1007/s00467-020-04842-7

    Article  PubMed  Google Scholar 

  12. KDIGO (2012) Clinical practice guideline for acute kidney injury (AKI). Kidney Int 2:4. https://doi.org/10.1038/kisup.2012.4

    Article  Google Scholar 

  13. Gyurkocza B, Sandmaier BM (2014) Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood 124:344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Selewski DT, Goldstein SL (2018) The role of fluid overload in the prediction of outcome in acute kidney injury. Pediatr Nephrol 33:13–24. https://doi.org/10.1007/s00467-016-3539-6

    Article  PubMed  Google Scholar 

  15. Rondon G, Saliba R, Chen J, Ledesma C et al (2017) Impact of fluid overload as new toxicity category on hematopoietic stem-cell transplant outcomes. Biol Blood Marrow Transplant 23:2166–2171. https://doi.org/10.1016/j.bbmt.2017.08.021.Impact

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA et al (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561. https://doi.org/10.2215/CJN.01900214

    Article  PubMed  PubMed Central  Google Scholar 

  17. Basu RK, Wang Y, Wong HR, Chawla LS et al (2014) Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol 9:654–662. https://doi.org/10.2215/CJN.09720913

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andronesi A, Sorohan B, Burcea A, Lipan L et al (2022) Incidence and risk factors for acute kidney injury after allogeneic stem cell transplantation: a prospective study. Biomedicines 10:262. https://doi.org/10.3390/biomedicines10020262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sawinski D, Trofe-Clark J, Leas B, Uhl S et al (2016) Calcineurin inhibitor minimization, conversion, withdrawal, and avoidance strategies in renal transplantation: a systematic review and meta-analysis. Am J Transplant 16:2117–2138. https://doi.org/10.1111/ajt.13710

  20. Michael M, Kuehnle I, Goldstein SL (2004) Fluid overload and acute renal failure in pediatric stem cell transplant patients. Pediatr Nephrol 19:91–95. https://doi.org/10.1007/s00467-003-1313-z

    Article  PubMed  Google Scholar 

  21. Butcher BW, Liu KD (2012) Fluid overload in AKI: epiphenomenon or putative effect on mortality? Curr Opin Crit Care 18:593–598. https://doi.org/10.1097/MCC.0b013e32835a1c44

    Article  PubMed  PubMed Central  Google Scholar 

  22. Selewski DT, Cornell TT, Blatt NB, Han YY et al (2012) NIH public access. Crit Care Med 40:2694–2699. https://doi.org/10.1097/CCM.0b013e318258ff01.Fluid

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Díaz F, Nuñez MJ, Pino P, Erranz B et al (2018) Implementation of preemptive fluid strategy as a bundle to prevent fluid overload in children with acute respiratory distress syndrome and sepsis. BMC Pediatr 18:1–7. https://doi.org/10.1186/s12887-018-1188-6

    Article  CAS  Google Scholar 

  24. Silversides JA, Major E, Ferguson AJ, Mann EE et al (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170. https://doi.org/10.1007/s00134-016-4573-3

    Article  PubMed  Google Scholar 

  25. Claure-Del Granado R, Mehta RL (2016) Fluid overload in the ICU: evaluation and management. BMC Nephrol 17:1–9. https://doi.org/10.1186/s12882-016-0323-6

    Article  CAS  Google Scholar 

  26. Heung M, Wolfgram DF, Kommareddi M, Hu Y et al (2012) Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant 27:956–961. https://doi.org/10.1093/ndt/gfr470

    Article  CAS  PubMed  Google Scholar 

  27. Mehta RL (2011) Management of acute kidney injury : it’s the squeaky wheel that gets the oil! Clin J Am Soc Nephrol 6:2102–2104. https://doi.org/10.2215/CJN.07720811

    Article  CAS  PubMed  Google Scholar 

  28. Mehta RL, Mcdonald B, Gabbai F, Pahl M et al (2002) Nephrology consultation in acute renal failure: does timing matter? Am J Med 113:456–461

    Article  PubMed  Google Scholar 

  29. Soares DM, Pessanha JF, Sharma A, Brocca A et al (2017) Delayed nephrology consultation and high mortality on acute kidney injury. Blood Purif 310:57–67. https://doi.org/10.1159/000452316

    Article  Google Scholar 

  30. Balasubramanian G, Al-Aly Z, Moiz A, Rauchman M et al (2011) Early nephrologist involvement in hospital-acquired acute kidney injury: a pilot study. Am J Kidney Dis 57:228–234. https://doi.org/10.1053/j.ajkd.2010.08.026

    Article  PubMed  Google Scholar 

  31. Ponce D, Zorzenon Cde P, dos Santos NY, Balbi AL (2011) Early nephrology consultation can have an impact on outcome of acute kidney injury patients. Nephrol Dial Transplant 26:3202–3206. https://doi.org/10.1093/ndt/gfr359

    Article  PubMed  Google Scholar 

  32. Meier P, Bonfils RM, Vogt B, Burnand B et al (2011) Referral patterns and outcomes in noncritically ill patients with hospital-acquired acute kidney injury. Clin J Am Soc Nephrol 6:2215–2225. https://doi.org/10.2215/CJN.01880211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S et al (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189. https://doi.org/10.1038/sj.ki.5000032

    Article  CAS  PubMed  Google Scholar 

  34. Harer MW, Pope CF, Conaway MR, Charlton JR (2017) Follow-up of Acute kidney injury in Neonates during Childhood Years (FANCY): a prospective cohort study. Pediatr Nephrol 32:1067–1076. https://doi.org/10.1007/s00467-017-3603-x

    Article  PubMed  Google Scholar 

  35. Ciccia E, Devarajan P (2017) Pediatric acute kidney injury: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis 10:77–84. https://doi.org/10.2147/IJNRD.S103785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tjaden LA, Vogelzang J, Jager KJ, van Stralen KJ et al (2014) Long-term quality of life and social outcome of childhood end-stage renal disease. J Pediatr 165:336-342.e1. https://doi.org/10.1016/j.jpeds.2014.04.013

    Article  PubMed  Google Scholar 

  37. Pundzienė B, Dobilienė D, Rudaitis S (2010) Acute kidney injury in pediatric patients: experience of a single center during an 11-year period. Medicina (Kaunas) 46:511–515. https://doi.org/10.3390/medicina46080073

  38. Laskin BL, Goebel J, Davies SM, Khoury JC et al (2011) Early clinical indicators of transplant-associated thrombotic microangiopathy in pediatric neuroblastoma patients undergoing auto-SCT. Bone Marrow Transplant 46:682–689. https://doi.org/10.1038/bmt.2010.182

    Article  CAS  PubMed  Google Scholar 

  39. Laskin BL, Nehus E, Goebel J, Furth S et al (2014) Estimated versus measured glomerular filtration rate in children before hematopoietic cell transplantation. Biol Blood Marrow Transplant 20:2056–2061. https://doi.org/10.1016/j.bbmt.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koeze J, Keus F, Dieperink W, van der Horst IC et al (2017) Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol 18:1–9. https://doi.org/10.1186/s12882-017-0487-8

    Article  CAS  Google Scholar 

  41. Menon S, Goldstein SL, Mottes T, Fei L et al (2016) Urinary biomarker incorporation into the renal angina index early in intensive care unit admission optimizes acute kidney injury prediction in critically ill children: a prospective cohort study. Nephrol Dial Transplant 31:586–594. https://doi.org/10.1093/ndt/gfv457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou F, Luo Q, Wang L, Han L (2016) Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg 49:746–755. https://doi.org/10.1093/ejcts/ezv199

    Article  PubMed  Google Scholar 

  43. Filho LT, Grande AJ, Colonetti T, Della ESP et al (2017) Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr Nephrol 32:1979–1988. https://doi.org/10.1007/s00467-017-3704-6

    Article  PubMed  Google Scholar 

  44. Benoit SW, Dixon BP, Goldstein SL, Bennett MR et al (2019) A novel strategy for identifying early acute kidney injury in pediatric hematopoietic stem cell transplantation. Bone Marrow Transplant 54:1453–1461 https://doi.org/10.1038/s41409-018-0428-6

Download references

Acknowledgements

We thank our colleagues from the Department of Pediatrics, Division of Nephrology and Division of Hematology–Oncology and Bone Marrow Transplant who provided insight and expertise that greatly assisted the research. We would also like to specifically acknowledge Agne Taraseviciute, MD, who assisted in the formation of the initial study design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbie Bauer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract

(PPTX 102 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, A., Carlin, K., Schwartz, S.M. et al. Risk factors for severe acute kidney injury after pediatric hematopoietic cell transplantation. Pediatr Nephrol 38, 1365–1372 (2023). https://doi.org/10.1007/s00467-022-05731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05731-x

Keywords

Navigation