Skip to main content

Advertisement

Log in

Risk factors for childhood chronic kidney disease: a population-based study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

The population-based prevalence and risk factors of childhood chronic kidney disease (CKD) are not well-defined. We ascertained childhood CKD epidemiology and perinatal risk factors, based on a large computerized medical record database that covers most of southern Israel’s population.

Methods

Pre- and post-natal records of 79,374 eligible children (with at least one serum creatinine test) born during 2001–2015 were analyzed. “Ever-CKD” was defined as ≥ 2 estimated glomerular filtration rate (eGFR) values < 60 ml/min/1.73 m2 beyond age 2 years, more than 3 months apart. The last CKD status was determined on March 2019.

Results

Of 82 (0.1%) patients with ever-CKD, 35 (42.7%) had their first abnormal eGFR identified already at age 2 years. In multiple logistic regression analysis, congenital anomalies of kidney and urinary tract (CAKUT)-related diagnoses, glomerulopathy, maternal oligohydramnios, small for gestational age, prematurity (under 34 weeks), post-term delivery, and small for gestational age at birth were significant risk factors for ever-CKD (odds ratio (95% confidence interval): 44.34(26.43–74.39), 64.60(32.42–128.70), 5.54(3.01–10.19), 2.02(1.25–3.28), 4.45(2.13–9.28), 2.96(1.28–6.86 and 2.02(1.25–3.28), respectively). Seventy children with ever-CKD (85.4%) had a depressed eGFR (< 90 ml/min/1.73 m2) on the last assessment (current-CKD), yielding a prevalence of 882/million.

Conclusions

CKD is more prevalent among children in southern Israel than previously reported, even after excluding those with aborted-CKD. Prenatal conditions increase the risk to develop CKD in childhood.

A higher resolution version of the Graphical abstract is available as Supplementary information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calderon-Margalit R, Golan E, Twig G, Leiba A, Tzur D, Afek A, Skorecki K, Vivante A (2018) History of childhood kidney disease and risk of adult end-stage renal disease. N Engl J Med 378:428–438

    Article  PubMed  Google Scholar 

  2. Akchurin OM, Kaskel FJ (2013) Late steroid resistance in childhood nephrotic syndrome: do we now know more than 40 years ago? Pediatr Nephrol 28:1157–1160

    Article  PubMed  Google Scholar 

  3. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373

    Article  PubMed  Google Scholar 

  4. Ardissino G, Daccò V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, Marra G, Edefonti A, Sereni F (2003) Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics 111:e382-387

    Article  PubMed  Google Scholar 

  5. Areses Trapote R, Sanahuja Ibáñez MJ, Navarro M (2010) Epidemiology of chronic kidney disease in Spanish pediatric population. REPIR II Project. Nefrologia 30:508–517

    CAS  PubMed  Google Scholar 

  6. Soylemezoglu O, Duzova A, Yalçinkaya F, Arinsoy T, Süleymanlar G (2012) Chronic renal disease in children aged 5–18 years: a population-based survey in Turkey the CREDIT-C study. Nephrol Dial Transplant 27(Suppl 3):iii146–iii151

    PubMed  Google Scholar 

  7. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2012) United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis 59(A7):e1–e420

    Google Scholar 

  8. Schreuder MF, Nauta J (2007) Prenatal programming of nephron number and blood pressure. Kidney Int 72:265–268

    Article  CAS  PubMed  Google Scholar 

  9. Fan ZJ, Lackland DT, Lipsitz SR, Nicholas JS (2006) The association of low birthweight and chronic renal failure among Medicaid young adults with diabetes and/or hypertension. Public Health Rep 121:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  10. Essa A, Walfisch A, Sheiner E, Sergienko R, Wainstock T (2020) Delivery mode and future infectious morbidity of the offspring: a sibling analysis. Arch Gynecol Obstet 302:1135–1141

    Article  PubMed  Google Scholar 

  11. Pariente G, Walfisch A, Wainstock T, Landau D, Sergienko R, Sheiner E (2020) Prenatal exposure to isolated amniotic fluid disorders and the risk for long-term endocrine morbidity of the offspring. Arch Gynecol Obstet 302:873–878

    Article  CAS  PubMed  Google Scholar 

  12. Kessous R, Wainstock T, Sheiner E (2020) Pre-pregnancy obesity and childhood malignancies: a population-based cohort study. Pediatr Blood Cancer 67:e28269

    Article  PubMed  Google Scholar 

  13. Björk J, Nyman U, Larsson A, Delanaye P, Pottel H (2021) Estimation of the glomerular filtration rate in children and young adults by means of the CKD-EPI equation with age-adjusted creatinine values. Kidney Int 99:940–947

    Article  PubMed  Google Scholar 

  14. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80:17–28

    Article  PubMed  Google Scholar 

  15. Benisty K, Morgan C, Hessey E, Huynh L, Joffe AR, Garros D, Dancea A, Sauve R, Palijan A, Pizzi M, Bhattacharya S, Doucet JA, Cockovski V, Gottesman RG, Goldstein SL, Zappitelli M (2020) Kidney and blood pressure abnormalities 6 years after acute kidney injury in critically ill children: a prospective cohort study. Pediatr Res 88:271–278

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg JH, Zappitelli M, Devarajan P, Thiessen-Philbrook HR, Krawczeski C, Li S, Garg AX, Coca S, Parikh CR (2016) Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr 170:1071–1078

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rudnitzky A (2012) Age distribution. In: Rudnitzky A (ed) The Bedouin population in the Negev. The Abraham Fund Initiatives, Jerusalem, pp 17–19

  18. Finer G, Shalev H, Landau D (2006) Genetic kidney diseases in the pediatric population of southern Israel. Pediatr Nephrol 21:910–916

    Article  PubMed  Google Scholar 

  19. Amkraut J, Zaina A, Abu-Rabia Y (2018) Diabetes in the Bedouin population in the Israeli Negev - an update 2017. Diabetes Res Clin Pract 140:55–60

    Article  PubMed  Google Scholar 

  20. Roncal-Jimenez CA, García-Trabanino R, Wesseling C, Johnson RJ (2016) Mesoamerican nephropathy or global warming nephropathy? Blood Purif 41:135–138

    Article  CAS  PubMed  Google Scholar 

  21. Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910

    Article  PubMed  Google Scholar 

  22. Brophy PD, Charlton JR, Bryan Carmody J, Reidy KJ, Harshman L, Segar J, Askenazi D, Shoham D, Bagby SP (2018) Chronic kidney disease: a life course health development perspective. In: Halfon N, Forrest CB, Lerner RM, Faustman EM (eds) Handbook of Life Course Health Development. Springer, Cham, pp 375–401

    Chapter  Google Scholar 

  23. Ingelfinger JR, Kalantar-Zadeh K, Schaefer F (2016) Averting the legacy of kidney disease–focus on childhood. Kidney Int 89:512–518

    Article  PubMed  Google Scholar 

  24. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261

    Article  PubMed  Google Scholar 

  25. Gjerde A, Reisæter AV, Skrunes R, Marti HP, Vikse BE (2020) Intrauterine growth restriction and risk of diverse forms of kidney disease during the first 50 years of life. Clin J Am Soc Nephrol 15:1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L (2000) Outcome and growth of infants with severe chronic renal failure. Kidney Int 57:1681–1687

    Article  CAS  PubMed  Google Scholar 

  27. Greenbaum LA, Muñoz A, Schneider MF, Kaskel FJ, Askenazi DJ, Jenkins R, Hotchkiss H, Moxey-Mims M, Furth SL, Warady BA (2011) The association between abnormal birth history and growth in children with CKD. Clin J Am Soc Nephrol 6:14–21

    Article  PubMed  PubMed Central  Google Scholar 

  28. Uemura O, Ishikura K, Kaneko T, Hirano D, Hamasaki Y, Ogura M, Mikami N, Gotoh Y, Sahashi T, Fujita N, Yamamoto M, Hibino S, Nakano M, Wakano Y, Honda M (2021) Perinatal factors contributing to chronic kidney disease in a cohort of Japanese children with very low birth weight. Pediatr Nephrol 36:953–960

    Article  PubMed  Google Scholar 

  29. Hsu CW, Yamamoto KT, Henry RK, De Roos AJ, Flynn JT (2014) Prenatal risk factors for childhood CKD. J Am Soc Nephrol 25:2105–2111

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quirino IG, Dias CS, Vasconcelos MA, Poggiali IV, Gouvea KC, Pereira AK, Paulinelli GP, Moura AR, Ferreira RS, Colosimo EA, Simões ESAC, Oliveira EA (2014) A predictive model of chronic kidney disease in patients with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 29:2357–2364

    Article  PubMed  Google Scholar 

  31. Schierding W, O’Sullivan JM, Derraik JG, Cutfield WS (2014) Genes and post-term birth: late for delivery. BMC Res Notes 7:720

    Article  PubMed  PubMed Central  Google Scholar 

  32. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078-1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaturvedi S, Ng KH, Mammen C (2017) The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol 32:227–241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Geylis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 52.0 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geylis, M., Coreanu, T., Novack, V. et al. Risk factors for childhood chronic kidney disease: a population-based study. Pediatr Nephrol 38, 1569–1576 (2023). https://doi.org/10.1007/s00467-022-05714-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05714-y

Keywords

Navigation