Skip to main content

Advertisement

Log in

Vitamin D supplementation in children and young adults with persistent proteinuria secondary to glomerular disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Vitamin D deficiency is common in glomerular disease. Supplementation may be ineffective due to ongoing urinary losses of vitamin D binding protein. We sought to determine if daily cholecalciferol supplementation would increase vitamin D concentrations in children with glomerular disease and persistent proteinuria, without adverse effects.

Methods

Eighteen participants at least 5 years of age with primary glomerular disease and urine protein:creatinine ratio ≥ 0.5 were enrolled from four pediatric nephrology practices to receive cholecalciferol supplementation: 4,000 IU or 2,000 IU per day for serum 25 hydroxyvitamin vitamin D (25OHD) concentrations < 20 ng/mL and 20 ng/mL to < 30 ng/mL, respectively. Measures of vitamin D and mineral metabolism were obtained at baseline and weeks 6 and 12. Multivariable generalized estimating equation (GEE) regression estimated mean percent changes in serum 25OHD concentration.

Results

Median baseline 25OHD was 12.8 ng/mL (IQR 9.3, 18.9) and increased to 27.8 ng/mL (20.5, 36.0) at week 6 (p < 0.001) without further significant increase at week 12. A total of 31% of participants had a level ≥ 30 ng/mL at week 12. Supplementation was stopped in two participants at week 6 for mildly elevated calcium and phosphorus, respectively, with subsequent declines in 25OHD of > 20 ng/mL. In the adjusted GEE model, 25OHD was 102% (95% CI: 64, 141) and 96% (95% CI: 51, 140) higher versus baseline at weeks 6 and 12, respectively (p < 0.001).

Conclusion

Cholecalciferol supplementation in vitamin D deficient children with glomerular disease and persistent proteinuria safely increases 25OHD concentration. Ideal dosing to fully replete 25OHD concentrations in this population remains unknown.

Clinical trial

NCT01835639.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adedoyin O, Frank R, Vento S, Vergara M et al (2004) Cardiac disease in children with primary glomerular disorders - Role of focal segmental glomerulosclerosis. Pediatr Nephrol 19:408–412

    Article  Google Scholar 

  2. Ashoor IF, Mansfield SA, O’Shaughnessy MM, Parekh RS et al (2019) Prevalence of Cardiovascular Disease Risk Factors in Childhood Glomerular Diseases. J Am Heart Assoc 8:e012143. https://doi.org/10.1161/JAHA.119.012143

    Article  CAS  Google Scholar 

  3. Rheault MN, Zhang L, Selewski DT, Kallash M et al (2015) AKI in Children Hospitalized with Nephrotic Syndrome. Clin J Am Soc Nephrol 10:2110–2118. https://doi.org/10.2215/CJN.06620615

    Article  CAS  Google Scholar 

  4. Kyrieleis HAC, Löwik MM, Pronk I, Cruysberg HRM et al (2009) Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin J Am Soc Nephrol 4:1593–1600. https://doi.org/10.2215/CJN.05691108

    Article  Google Scholar 

  5. Kerlin BA, Blatt NB, Fuh B, Zhao S et al (2009) Epidemiology and risk factors for thromboembolic complications of childhood nephrotic syndrome: a Midwest Pediatric Nephrology Consortium (MWPNC) study. J Pediatr 155(105–110):110.e1. https://doi.org/10.1016/j.jpeds.2009.01.070

    Article  Google Scholar 

  6. Zhang Q, Zeng C, Cheng Z, Xie K et al (2012) Primary focal segmental glomerulosclerosis in nephrotic patients: common complications and risk factors. J Nephrol 25:679–688. https://doi.org/10.5301/jn.5000040

    Article  CAS  Google Scholar 

  7. Chonchol M, Scragg R (2007) 25-Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey. Kidney Int 71:134–139. https://doi.org/10.1038/sj.ki.5002002

    Article  CAS  Google Scholar 

  8. Lac PT, Choi K, Liu I-A, Meguerditchian S et al (2010) The effects of changing vitamin D levels on anemia in chronic kidney disease patients: a retrospective cohort review. Clin Nephrol 74:25–32. https://doi.org/10.5414/CNP74025

    Article  CAS  Google Scholar 

  9. Holick MF (2008) The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med 29:361–368. https://doi.org/10.1016/j.mam.2008.08.008

    Article  CAS  Google Scholar 

  10. Holick MF (2007) Vitamin D Deficiency. N Engl J Med 357:266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  Google Scholar 

  11. Cetin N, Gencler A, Sivrikoz IA (2019) Bone mineral density and vitamin D status in children with remission phase of steroid-sensitive nephrotic syndrome. Saudi J Kidney Dis Transpl 30:853–862. https://doi.org/10.4103/1319-2442.265461

    Article  Google Scholar 

  12. Aggarwal A, Yadav AK, Ramachandran R, Kumar V et al (2016) Bioavailable vitamin D levels are reduced and correlate with bone mineral density and markers of mineral metabolism in adults with nephrotic syndrome. Nephrology 21:483–489. https://doi.org/10.1111/nep.12638

    Article  CAS  Google Scholar 

  13. Selewski DT, Chen A, Shatat IF, Pais P et al (2016) Vitamin D in incident nephrotic syndrome: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 31:465–472. https://doi.org/10.1007/s00467-015-3236-x

    Article  Google Scholar 

  14. Kuhlmann A, Haas CS, Gross M-L, Reulbach U et al (2004) 1,25-Dihydroxyvitamin D 3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomized rat. Am J Physiol Renal Physiol 286:F526–F533. https://doi.org/10.1152/ajprenal.00316.2003

    Article  CAS  Google Scholar 

  15. Susantitaphong P, Nakwan S, Peerapornratana S, Tiranathanagul K et al (2017) A double-blind, randomized, placebo-controlled trial of combined calcitriol and ergocalciferol versus ergocalciferol alone in chronic kidney disease with proteinuria. BMC Nephrol 18:19. https://doi.org/10.1186/s12882-017-0436-6

    Article  CAS  Google Scholar 

  16. Liyanage P, Lekamwasam S, Weerarathna T, Liyanage C (2018) Effect of Vitamin D therapy on urinary albumin excretion, renal functions, and plasma renin among patients with diabetic nephropathy: A randomized, double-blind clinical trial. J Postgrad Med 64:10–15. https://doi.org/10.4103/jpgm.JPGM_598_16

    Article  Google Scholar 

  17. Gulati S, Sharma RK, Gulati K, Singh U et al (2005) Longitudinal follow-up of bone mineral density in children with nephrotic syndrome and the role of calcium and vitamin D supplements. Nephrol Dial Transplant 20:1598–1603. https://doi.org/10.1093/ndt/gfh809

    Article  CAS  Google Scholar 

  18. Bak M, Serdaroglu E, Guclu R (2006) Prophylactic calcium and vitamin D treatments in steroid-treated children with nephrotic syndrome. Pediatr Nephrol 21:350–354. https://doi.org/10.1007/s00467-005-2118-z

    Article  Google Scholar 

  19. Choudhary S, Agarwal I, Seshadri MS (2014) Calcium and vitamin D for osteoprotection in children with new-onset nephrotic syndrome treated with steroids: a prospective, randomized, controlled, interventional study. Pediatr Nephrol 29:1025–1032. https://doi.org/10.1007/s00467-013-2720-4

    Article  Google Scholar 

  20. Singh DN, Krishnamurthy S, Kamalanathan SK, Harichandrakumar KT et al (2018) Three-monthly bolus vitamin D supplements (1000 vs 400 IU/day) for prevention of bone loss in children with difficult-to-treat nephrotic syndrome: a randomised clinical trial. Paediatr Int Child Health 38:251–260. https://doi.org/10.1080/20469047.2018.1505589

    Article  Google Scholar 

  21. Eknoyan G, Levin A, Levin NW (2003) Bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42:1–201. https://doi.org/10.1016/s0272-6386(03)00905-3

    Article  Google Scholar 

  22. Shroff R, Wan M, Nagler EV, Bakkaloǧlu S et al (2017) Clinical practice recommendations for native Vitamin D therapy in children with chronic kidney disease Stages 2–5 and on dialysis. Nephrol Dial Transplant 32:1098–1113. https://doi.org/10.1093/ndt/gfx065

    Article  CAS  Google Scholar 

  23. Goldstein DA, Haldimann B, Sherman D, Norman AW et al (1981) Vitamin D Metabolites and Calcium Metabolism in Patients with Nephrotic Syndrome and Normal Renal Function*. J Clin Endocrinol Metab 52:116–121. https://doi.org/10.1210/jcem-52-1-116

    Article  CAS  Google Scholar 

  24. Barragry JM, France MW, Carter ND, Auton JA et al (1977) Vitamin-D metabolism in nephrotic syndrome. Lancet 2:629–632. https://doi.org/10.1016/s0140-6736(77)92498-9

    Article  CAS  Google Scholar 

  25. Schmidt-Gayk H, Grawunder C, Tschöpe W, Schmitt W et al (1977) 25-HYDROXY-VITAMIN-D IN NEPHROTIC SYNDROME. Lancet 2:105–108. https://doi.org/10.1016/S0140-6736(77)90118-0

    Article  CAS  Google Scholar 

  26. Banerjee S, Basu S, Sen A, Sengupta J (2017) The effect of vitamin D and calcium supplementation in pediatric steroid-sensitive nephrotic syndrome. Pediatr Nephrol 32:2063–2070. https://doi.org/10.1007/s00467-017-3716-2

    Article  Google Scholar 

  27. Muske S, Krishnamurthy S, Kamalanathan SK, Rajappa M et al (2018) Effect of two prophylactic bolus vitamin D dosing regimens (1000 IU/day vs. 400 IU/day) on bone mineral content in new-onset and infrequently-relapsing nephrotic syndrome: a randomised clinical trial. Paediatr Int Child Health 38:23–33. https://doi.org/10.1080/20469047.2017.1319528

    Article  Google Scholar 

  28. Banerjee S, Basu S, Sengupta J (2013) Vitamin D in nephrotic syndrome remission: A case-control study. Pediatr Nephrol 28:1983–1989. https://doi.org/10.1007/s00467-013-2511-y

    Article  Google Scholar 

  29. Iyengar A, Kamath N, Reddy HV, Sharma J et al (2020) Determining the optimal cholecalciferol dosing regimen in children with CKD: a randomized controlled trial. Nephrol Dial Transplant 37:326–334. https://doi.org/10.1093/NDT/GFAA369

    Article  Google Scholar 

  30. Haldimann B, Healy M, Jelliffe R, Goldstein DA, Pattabhiraman R, Massry SG (1980) Effect of an Oral Dose of 25-Hydroxyvitamin D3 on Its Blood Levels in Patients with the Nephrotic Syndrome. J Clin Endocrinol Metab 50:470–474

    Article  CAS  Google Scholar 

  31. Schwartz GJ, Muñoz A, Schneider MF, Mak RH et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  Google Scholar 

  32. Levey AS, Stevens LA, Schmid CH, Zhang YL et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  Google Scholar 

  33. Rucker D, Tonelli M, Coles MG, Yoo S et al (2009) Vitamin D insufficiency and treatment with oral vitamin D3 in northern-dwelling patients with chronic kidney disease. J Nephrol 22:75–82

    CAS  Google Scholar 

  34. Feskanich D, Sielaff BH, Chong K, Buzzard IM (1989) Computerized collection and analysis of dietary intake information. Comput Methods Programs Biomed 30:47–57. https://doi.org/10.1016/0169-2607(89)90122-3

    Article  CAS  Google Scholar 

  35. Laha TJ, Strathmann FG, Wang Z, De Boer IH et al (2012) Characterizing antibody cross-reactivity for immunoaffinity purification of analytes prior to multiplexed liquid chromatography-tandem mass spectrometry. Clin Chem 58:1711–1716. https://doi.org/10.1373/clinchem.2012.185827

    Article  CAS  Google Scholar 

  36. Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 92:183–188. https://doi.org/10.1007/BF00219689

    Article  CAS  Google Scholar 

  37. Henderson CM, Lutsey PL, Misialek JR, Laha TJ et al (2016) Measurement by a novel LC-MS/MS methodology reveals similar serum concentrations of Vitamin D-binding protein in blacks and whites. Clin Chem 62:179–187. https://doi.org/10.1373/clinchem.2015.244541

    Article  CAS  Google Scholar 

  38. Speeckaert MM, Speeckaert R, van Geel N, Delanghe JR (2014) Vitamin D binding protein. A multifunctional protein of clinical importance. Adv Clin Chem 63:1–57. https://doi.org/10.1016/B978-0-12-800094-6.00001-7

    Article  CAS  Google Scholar 

  39. Powe CE, Evans MK, Wenger J, Zonderman AB et al (2013) Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med 369:1991–2000. https://doi.org/10.1056/NEJMOA1306357

    Article  CAS  Google Scholar 

  40. Pierce CB, Muñoz A, Ng DK, Warady BA et al (2020) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956. https://doi.org/10.1016/j.kint.2020.10.047

    Article  CAS  Google Scholar 

  41. Batacchi Z, Robinson-Cohen C, Hoofnagle AN, Isakova T et al (2017) Effects of vitamin D2 supplementation on vitamin D3 metabolism in health and CKD. Clin J Am Soc Nephrol 12:1498–1506. https://doi.org/10.2215/CJN.00530117

    Article  CAS  Google Scholar 

  42. Hari P, Gupta N, Hari S, Gulati A et al (2010) Vitamin D insufficiency and effect of cholecalciferol in children with chronic kidney disease. Pediatr Nephrol 25:2483–2488. https://doi.org/10.1007/s00467-010-1639-2

    Article  Google Scholar 

  43. Weng FL, Shults J, Herskovitz RM, Zemel BS et al (2005) Vitamin D insufficiency in steroid-sensitive nephrotic syndrome in remission. Pediatr Nephrol 20:56–63. https://doi.org/10.1007/s00467-004-1694-7

    Article  Google Scholar 

  44. Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN et al (2012) The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int 82:693–700. https://doi.org/10.1038/ki.2012.193

    Article  CAS  Google Scholar 

  45. Ginsberg C, Katz R, de Boer IH, Kestenbaum BR et al (2018) The 24,25 to 25-hydroxyvitamin D ratio and fracture risk in older adults: The cardiovascular health study. Bone 107:124–130. https://doi.org/10.1016/j.bone.2017.11.011

    Article  CAS  Google Scholar 

  46. Bansal N, Katz R, Appel L, Denburg M et al (2019) Vitamin D Metabolic Ratio and Risks of Death and CKD Progression. Kidney Int Rep 4:1598–1607. https://doi.org/10.1016/j.ekir.2019.08.014

  47. Ginsberg C, Hoofnagle AN, Katz R, Becker JO et al (2021) The Vitamin D Metabolite Ratio Is Independent of Vitamin D Binding Protein Concentration. Clin Chem 67:385–393. https://doi.org/10.1093/CLINCHEM/HVAA238

    Article  Google Scholar 

  48. Rebholz CM, Grams ME, Lutsey PL, Hoofnagle AN et al (2016) Biomarkers of Vitamin D Status and Risk of ESRD. Am J Kidney Dis 67:235–242. https://doi.org/10.1053/J.AJKD.2015.08.026

    Article  CAS  Google Scholar 

  49. Ko DH, Jun SH, Nam Y, Song SH et al (2021) Multiplex LC–MS/MS for simultaneous determination of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D3, albumin, and vitamin D-binding protein with its isoforms: One-step estimation of bioavailable vitamin D and vitamin D metabolite ratio. J Steroid Biochem Mol Biol 206:105796. https://doi.org/10.1016/J.JSBMB.2020.105796

    Article  CAS  Google Scholar 

  50. Robinson-Cohen C, Zelnick LR, Hoofnagle AN, Lutsey PL et al (2017) Associations of Vitamin D-Binding Globulin and Bioavailable Vitamin D Concentrations With Coronary Heart Disease Events: The Multi-Ethnic Study of Atherosclerosis (MESA). J Clin Endocrinol Metab 102:3075–3084. https://doi.org/10.1210/JC.2017-00296

    Article  Google Scholar 

  51. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D et al (2011) Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 26:1609–1616. https://doi.org/10.1002/JBMR.387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Amy York, PA, and Maryjane Benton, RN, BSN, for their assistance with study coordination and project management.

Funding

This work was supported by K23 DK093556 and the Nephcure Foundation-American Society of Nephrology Research Grant (PI: Michelle Denburg). Statistical analysis was supported by The Children’s Hospital of Philadelphia Pediatric Center of Excellence in Nephrology (P50 DK114786). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, Nephcure Foundation or the American Society of Nephrology.

Author information

Authors and Affiliations

Authors

Contributions

Michelle R. Denburg and Mary B. Leonard took part in conceptualization; Michelle R. Denburg, Mary B. Leonard, Andrew N. Hoofnagle involved in methodology; Amy J. Kogon, Lance Ballester, Natalie Walker, Michelle R. Denburg involved in formal analysis and investigation; Amy J Kogon, Lance Ballester, Michelle R. Denburg took part in writing—original draft preparation; Amy J. Kogon, Lance Ballester, Natalie Walker, Joshua Zaritsky, Meredith Atkinson, Christine B Sethana, Andrew N Hoofnagle, Mary B Leonard, Michelle R Denburg involved in writing—review and editing; Michelle R. Denburg took part in funding acquisition; Michelle R. Denburg and Andrew R. Hoofnagle took part in resources; Michelle R. Denburg and Mary B Leonard took part in supervision.

Corresponding author

Correspondence to Amy J. Kogon.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogon, A.J., Ballester, L.S., Zee, J. et al. Vitamin D supplementation in children and young adults with persistent proteinuria secondary to glomerular disease. Pediatr Nephrol 38, 749–756 (2023). https://doi.org/10.1007/s00467-022-05660-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05660-9

Keywords

Navigation