Skip to main content

Advertisement

Log in

Urinary metabolomics to develop predictors for pediatric acute kidney injury

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Acute kidney injury (AKI) is characterized by an abrupt decline in glomerular filtration rate (GFR). We sought to identify separate early urinary metabolomic signatures at AKI onset (with-AKI) and prior to onset of functional impairment (pre-AKI).

Methods

Pre-AKI (n=15), AKI (n=22), and respective controls (n=30) from two prospective PICU cohort studies provided urine samples which were analyzed by GC-MS and DI-MS mass spectrometry (193 metabolites). The cohort (n=58) was 8.7±6.4 years old and 66% male. AKI patients had longer PICU stays, higher PRISM scores, vasopressors requirement, and respiratory diagnosis and less commonly had trauma or post-operative diagnosis. Urine was collected within 2–3 days after admission and daily until day 5 or 14.

Results

The metabolite classifiers for pre-AKI samples (1.5±1.1 days prior to AKI onset) had a cross-validated area under receiver operator curve (AUC)=0.93 (95%CI 0.85–1.0); with-AKI samples had an AUC=0.94 (95%CI 0.87–1.0). A parsimonious pre-AKI classifier with 13 metabolites was similarly robust (AUC=0.96, 95%CI 0.89–1.0). Both classifiers were similar and showed modest correlation of high-ranking metabolites (tau=0.47, p<0.001).

Conclusions

This exploratory study demonstrates the potential of a urine metabolite classifier to detect AKI-risk in pediatric populations earlier than the current standard of diagnosis with the need for external validation.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information with inner reference to ESM for GA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Patient level data is not publicly available. Primary data is available upon request from the corresponding author.

Code availability

Code for analysis in R is available, upon request from the corresponding author.

References

  1. Sutherland S, Ji J, Sheikhi F (2013) AKI in Hospitalized Children: Epidemiology and Clinical Associations in a National Cohort. Clin J Am Soc Nephrol 8:1661–1669

    Article  Google Scholar 

  2. Benisty K, Morgan C, Hessey E, Huynh L et al (2020) Kidney and blood pressure abnormalities 6 years after acute kidney injury in critically ill children: a prospective cohort study. Pediatr Res 88:271–278. https://doi.org/10.1038/s41390-019-0737-5

    Article  CAS  PubMed  Google Scholar 

  3. Kellum JA, Lameire N, Aspelin P, Barsoum RS et al (2012) Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138. https://doi.org/10.1038/kisup.2012.1

    Article  Google Scholar 

  4. Meersch M, Schmidt C, Van Aken H, Martens S et al (2014) Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One 9:1–9. https://doi.org/10.1371/journal.pone.0093460

    Article  CAS  Google Scholar 

  5. Martin-Lorenzo M, Gonzalez-Calero L, Ramos-Barron A, Sanchez-Niño MD et al (2017) Urine metabolomics insight into acute kidney injury point to oxidative stress disruptions in energy generation and H 2 S availability. J Mol Med 95:1399–1409. https://doi.org/10.1007/s00109-017-1594-5

    Article  CAS  PubMed  Google Scholar 

  6. Zhou F, Luo Q, Wang L, Han L (2016) Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury : a meta-analysis. Eur J Cardio-Thoracic Surg 49:746–755. https://doi.org/10.1093/ejcts/ezv199

    Article  Google Scholar 

  7. Marx D, Metzger J, Pejchinovski M, Gil RB et al (2018) Proteomics and Metabolomics for AKI Diagnosis. Semin Nephrol 38:63–87. https://doi.org/10.1016/J.SEMNEPHROL.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  8. Vanmassenhove J, Glorieux G, Lameire N, Hoste E et al (2015) Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: a prospective cohort study of patients with sepsis. BMC Nephrol 16:18. https://doi.org/10.1186/s12882-015-0003-y

  9. Alge JL, Arthur JM (2015) Biomarkers of AKI: A review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 10:147–155. https://doi.org/10.2215/CJN.12191213

    Article  CAS  PubMed  Google Scholar 

  10. Archdekin B, Sharma A (2019) Non-invasive differentiation of non-rejection kidney injury from acute rejection in pediatric renal transplant recipients. Pediatr Transpl 23:e13364

    Article  Google Scholar 

  11. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843. https://doi.org/10.2215/CJN.01640309

    Article  PubMed  Google Scholar 

  12. Sharma A, Gibson IW, Mandal R, Wishart DS (2014) Urinary Metabolomics for Noninvasive Detection of Borderline and Acute T Cell – Mediated Rejection in Children After Kidney Transplantation. Am J Transpl 14:2339–2349. https://doi.org/10.1111/ajt.12837

    Article  Google Scholar 

  13. Blydt-hansen TD, Sharma A, Gibson IW, Wishart DS et al (2017) Urinary Metabolomics for Noninvasive Detection of Antibody-Mediated Rejection in Children After Kidney Transplantation. Transplantation 101:2553–2561. https://doi.org/10.1097/TP.0000000000001662

    Article  CAS  PubMed  Google Scholar 

  14. Suhre K, Schwartz J, Sharma V, Chen Q (2016) Urine Metabolite Profiles Predictive of Human Kidney Allograft Status. J Am Soc Nephrol 27:626–636

    Article  CAS  Google Scholar 

  15. Landsberg A, Sharma A, Gibson IW, Rush D et al (2018) Non-invasive staging of chronic kidney allograft damage using urine metabolomic profiling. Pediatr Transplant 22:e13226. https://doi.org/10.1111/petr.13226

  16. Bojko B, Marcin W, Pawliszyn J (2014) Metabolic pro fi ling of plasma from cardiac surgical patients concurrently administered with tranexamic acid : DI-SPME – LC – MS analysis. J Pharm Anal 4:6–13. https://doi.org/10.1016/j.jpha.2013.03.002

    Article  PubMed  Google Scholar 

  17. Simonato M, Fochi I, Vedovelli L, Giambelluca S et al (2019) Urinary metabolomics reveals kynurenine pathway perturbation in newborns with transposition of great arteries after surgical repair. Metabolomics 15:145. https://doi.org/10.1007/s11306-019-1605-3

  18. Lee C, Hsieh Y, Chen S, Fu S et al (2018) Bretschneider solution- induced alterations in the urine metabolome in cardiac surgery patients. Sci Rep 8:17774. https://doi.org/10.1038/s41598-018-35631-w

  19. Lagos-Arevalo P, Palijan A, Vertullo L, Devarajan P et al (2015) Cystatin C in acute kidney injury diagnosis: early biomarker or alternative to serum creatinine? Pediatr Nephrol 30:665–676

    Article  Google Scholar 

  20. Palermo J, Dart AB, De Mello A, Devarajan P et al (2017) Biomarkers for Early Acute Kidney Injury Diagnosis and Severity Prediction: A Pilot Multicenter Canadian Study of Children Admitted to the ICU. Pediatr Crit Care Med 18:e235–e244. https://doi.org/10.1097/PCC.0000000000001183

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eric Thomas C, Sexton W, Benson K, Sutphen R et al (2010) Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol Biomarkers Prev 19:953–959. https://doi.org/10.1158/1055-9965.EPI-10-0069

    Article  CAS  PubMed  Google Scholar 

  22. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK et al (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035. https://doi.org/10.1038/sj.ki.5002231

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GJ, Muñoz A, Schneider MF, Mak RH et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rink N, Zappitelli M (2015) Estimation of glomerular filtration rate with and without height: effect of age and renal function level. Pediatr Nephrol 30:1327–1336

    Article  Google Scholar 

  25. Zheng J, Mandal R, Wishart DS (2018) A sensitive, high-throughput LC-MS / MS method for measuring catecholamines in low volume serum. Anal Chim Acta 1037:159–167. https://doi.org/10.1016/j.aca.2018.01.021

    Article  CAS  PubMed  Google Scholar 

  26. Bouatra S, Aziat F, Mandal R, Guo AC et al (2013) The Human Urine Metabolome. PLoS One 8:e73076. https://doi.org/10.1371/journal.pone.0073076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vogl FC, Mehrl S, Heizinger L, Schlecht I et al (2016) Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics. Anal Bioanal Chem 408:8483–8493. https://doi.org/10.1007/s00216-016-9974-1

    Article  CAS  PubMed  Google Scholar 

  28. Lê Cao KA, Boitard S, Besse P (2011) Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12:253. https://doi.org/10.1186/1471-2105-12-253

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xia J, Mandal R, Sinelnikov IV, Broadhurst D et al (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:127–133. https://doi.org/10.1093/nar/gks374

    Article  CAS  Google Scholar 

  30. Melvik B-H, Wehrens R (2007) The pls Package: Principal Component and Partial Least Squares Regression in R. J Stat Softw 18:1–23

    Article  Google Scholar 

  31. De Abreu KLS, Da Silva GB, Muniz TD, Barreto AGC et al (2013) Acute kidney injury in critically ill patients with lung disease: Kidney-lung crosstalk. Rev Bras Ter Intensiva 25:130–136. https://doi.org/10.5935/0103-507X.20130024

    Article  PubMed  PubMed Central  Google Scholar 

  32. (2012) Section 3: Prevention and Treatment of AKI. Kidney Int Suppl 2:37–68. https://doi.org/10.1038/kisup.2011.33

  33. Paladino JD, Hotchkiss JR, Rabb H (2009) Acute kidney injury and lung dysfunction: A paradigm for remote organ effects of kidney disease? Microvasc Res 77:8–12. https://doi.org/10.1016/j.mvr.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  34. Kashani K, Al-Khafaji A, Ardiles T, Artigas A et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25. https://doi.org/10.1186/cc12503

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beger RD, Holland RD, Sun J, Schnackenberg LK et al (2008) Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol 23:977–984. https://doi.org/10.1007/s00467-008-0756-7

    Article  PubMed  Google Scholar 

  36. Muhle-goll C, Eisenmann P, Luy B, Kölker S et al (2020) Urinary NMR profiling in pediatric acute kidney injury—a pilot study. Int J Mol Sci 21:1187. https://doi.org/10.3390/ijms21041187

    Article  CAS  PubMed Central  Google Scholar 

  37. Mercier K, McRitchie S, Pathmasiri W, Novokhatny A (2017) Preterm Neonatal Urinary Renal Developmental and Acute Kidney Injury Metabolomic Profiling: An Exploratory Study. Pediatr Nephrol 32:151–161. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  38. Chesney RW, Han X, Patters AB (2010) Taurine and the renal system. J Biomed Sci 17 Suppl 1(Suppl 1):S4. https://doi.org/10.1186/1423-0127-17-S1-S4

  39. Trachtman H, Futterweit S, Prenner J, Hanon S (1994) Antioxidants reverse the antiproliferative effect of high glucose and advanced glycosylation end products in cultured rat mesangial cells. Biochem Biophys Res Commun 199:346–352

    Article  CAS  Google Scholar 

  40. Jouret F, Leenders J, Poma L, Defraigne JO et al (2016) Nuclear magnetic resonance metabolomic profiling of mouse kidney, urine and serum following renal ischemia/reperfusion injury. PLoS One 11:e0163021. https://doi.org/10.1371/journal.pone.0163021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qu X, Gao H, Sun J, Tao L et al (2020) Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology 431:152366. https://doi.org/10.1016/j.tox.2020.152366

    Article  CAS  PubMed  Google Scholar 

  42. Cooke D, Ouattara A, Ables GP (2018) Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J 32:693–702. https://doi.org/10.1096/fj.201700419R

    Article  CAS  PubMed  Google Scholar 

  43. Kim YS, Jung MH, Choi MY, Kim YH et al (2009) Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14–3-3. Crit Care Med 37:2033–2044. https://doi.org/10.1097/CCM.0b013e3181a005ba

    Article  CAS  PubMed  Google Scholar 

  44. Dalili N, Chashmniam S, Khoormizi SMH, Salehi L et al (2020) Urine and serum NMR-based metabolomics in pre-procedural prediction of contrast-induced nephropathy. Intern Emerg Med 15:95–103. https://doi.org/10.1007/s11739-019-02128-x

    Article  PubMed  Google Scholar 

  45. Vera-Aviles M, Vantana E, Kardinasari E, Koh NL et al (2018) Protective role of histidine supplementation against oxidative stress damage in the management of anemia of chronic kidney disease. Pharmaceuticals 11:111. https://doi.org/10.3390/ph11040111

    Article  CAS  PubMed Central  Google Scholar 

  46. Wang S, Xiao C, Liu C, Li J et al (2020) Identification of Biomarkers of Sepsis-Associated Acute Kidney Injury in Pediatric Patients Based on UPLC-QTOF/MS. Inflammation 43:629–640. https://doi.org/10.1007/s10753-019-01144-5

    Article  PubMed  Google Scholar 

  47. Zhao YY (2013) Metabolomics in chronic kidney disease. Clin Chim Acta 422:59–69. https://doi.org/10.1016/j.cca.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  48. Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR et al (2019) The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int 95:333–349. https://doi.org/10.1016/j.kint.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  49. Aregger F, Uehlinger DE, Fusch G, Bahonjic A et al (2018) Increased urinary excretion of kynurenic acid is associated with non-recovery from acute kidney injury in critically ill patients. BMC Nephrol 19:44. https://doi.org/10.1186/s12882-018-0841-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanna MH, Segar JL, Teesch LM, Kasper DC et al (2013) Urinary metabolomic markers of aminoglycoside nephrotoxicity in newborn rats. Pediatr Res 73:585–591. https://doi.org/10.1038/pr.2013.34.Urinary

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and parents who agreed to participate in the two primary studies on acute kidney injury.

Funding

This work was funded by an establishment grant by the BC Children’s Hospital Foundation. The primary research was funded by McGill University Health Centre Research Institute, the Kidney Research Scientist Core Education, National Training Program and the Fonds de Recherches en Santé du Quebec, a research salary award from the Fonds de Recherches du Quebec-Sante, and grants from the National Institutes of Health (NIH, P50DK096418).

Author information

Authors and Affiliations

Authors

Contributions

The following authors were involved in conceiving the research concept and approving the final manuscript: TBH, MZ, and AS. Analysis and results reporting was completed by AS, TBH, VC, and AF. The manuscript was drafted by AF.

Corresponding author

Correspondence to Tom D. Blydt-Hansen.

Ethics declarations

Ethics approval

Research ethics board approval was obtained from the University of British Columbia. In the primary studies, research ethics board approval was obtained to perform research activities at all participating institutions.

Consent to participate

Informed consent (and child assent when appropriate) in the original studies was obtained and included consent to utilize frozen biologic specimens for future analyses.

Consent for publication

Patients consented regarding publishing their data as per primary studies.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franiek, A., Sharma, A., Cockovski, V. et al. Urinary metabolomics to develop predictors for pediatric acute kidney injury. Pediatr Nephrol 37, 2079–2090 (2022). https://doi.org/10.1007/s00467-021-05380-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05380-6

Keywords

Navigation