Skip to main content

Advertisement

Log in

Effect of mycophenolic acid in experimental, nontransplant glomerular diseases: new mechanisms beyond immune cells

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Mycophenolic acid (MPA) was introduced into clinical practice as immunosuppressive drug therapy to prevent allograft rejection. Since then, its clinical application has widened. Our goal was to review the lessons learned from experimental nontransplant glomerular disease models on the mechanisms of MPA therapy. T and B lymphocytes are preferentially dependent on de novo purine synthesis. By inhibiting the rate-limiting enzyme of de novo purine synthesis, MPA depletes the pool of deoxyguanosine triphosphate (dGTP) and inhibits proliferation of these immune cells. Furthermore, MPA can also induce apoptosis of immune cells and is known to inhibit synthesis of fucose- and mannose-containing membrane glycoproteins altering the surface expression and binding ability of adhesion molecules. However, MPA exerts a direct effect also on nonimmune cells. Mesangial cells are partially dependent on de novo purine biosynthesis and are thus susceptible to MPA treatment. Additionally, MPA can inhibit apoptosis in podocytes and seems to be beneficial in preserving the expression of nephrin and podocin, and by attenuation of urokinase receptor expression leads to decreased foot-process effacement. In summary, our manuscript sheds light on the molecular mechanisms underlying the antiproteinuric effect of MPA. Overall, MPA is an excellent treatment option in many immunologic glomerulopathies because it possesses immunosuppressive properties, has a remarkable effect on nonimmune cells and counteracts the proliferation of mesangial cells, expansion of mesangial matrix, and foot-process effacement of podocytes combined with a low systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allison AC, Kowalski WJ, Muller CD, Eugui EM (1993) Mechanisms of action of mycophenolic acid. Ann N Y Acad Sci 696:63–87

    Article  CAS  PubMed  Google Scholar 

  2. Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118

    Article  CAS  PubMed  Google Scholar 

  3. Rovin BH (2012) Lupus nephritis: guidelines for lupus nephritis–more recommendations than data? Nat Rev Nephrol 8:620–621

    Article  PubMed  Google Scholar 

  4. Conti F, Ceccarelli F, Perricone C, Massaro L, Cipriano E, Pacucci VA, Truglia S, Miranda F, Morello F, Alessandri C, Spinelli FR, Valesini G (2014) Mycophenolate mofetil in systemic lupus erythematosus: results from a retrospective study in a large monocentric cohort and review of the literature. Immunol Res 60:270–276

    Article  CAS  PubMed  Google Scholar 

  5. Punaro MG (2013) The treatment of systemic lupus proliferative nephritis. Pediatr Nephrol 28:2069–2078

    Article  PubMed  Google Scholar 

  6. Ortega LM, Schultz DR, Lenz O, Pardo V, Contreras GN (2010) Review: Lupus nephritis: pathologic features, epidemiology and a guide to therapeutic decisions. Lupus 19:557–574

    Article  CAS  PubMed  Google Scholar 

  7. Ostalska-Nowicka D, Malinska A, Silska M, Perek B, Zachwieja J, Nowicki M (2011) Mycophenolate mofetil (MMF) treatment efficacy in children with primary and secondary glomerulonephritis. Arch Med Sci D 7:1042–1048

    Article  CAS  Google Scholar 

  8. Lombel RM, Gipson DS, Hodson EM (2013) Kidney Disease: Improving Global outcomes. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol 28:415–426

    Article  PubMed  Google Scholar 

  9. Gellermann J, Weber L, Pape L, Tönshoff B, Hoyer P, Querfeld U, Gesellschaft für Pädiatrische Nephrologie (GPN) (2013) Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol 24:1689–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larkins N, Kim S, Craig J, Hodson E (2016) Steroid-sensitive nephrotic syndrome: an evidence-based update of immunosuppressive treatment in children. Arch Dis Child 101:404–408

    Article  PubMed  Google Scholar 

  11. Hackl Á, Cseprekál O, Gessner M, Liebau MC, Habbig S, Ehren R, Müller C, Taylan C, Dötsch J, Weber LT (2016) Mycophenolate Mofetil Therapy in Children With Idiopathic Nephrotic Syndrome: Does Therapeutic Drug Monitoring Make a Difference? Ther Drug Monit 38:274–279

    Article  CAS  PubMed  Google Scholar 

  12. Sepe V, Libetta C, Giuliano MG, Adamo G, Dal Canton A (2008) Mycophenolate mofetil in primary glomerulopathies. Kidney Int 73:154–162

    Article  CAS  PubMed  Google Scholar 

  13. Paydas S, Kurt C, Taskapan H, Balal M, Sertdemir Y, Pembegul I (2009) The effect of mycophenolate mofetil on primary and secondary treatment of primary glomerulonephritis and lupus nephritis. Int Urol Nephrol 41:145–152

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Schieppati A, Cai G, Chen X, Zamora J, Giuliano GA, Braun N, Perna A (2013) Immunosuppression for membranous nephropathy: a systematic review and meta-analysis of 36 clinical trials. Clin J Am Soc Nephrol 8:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Schieppati A, Chen X, Cai G, Zamora J, Giuliano GA, Braun N, Perna A (2014) Immunosuppressive treatment for idiopathic membranous nephropathy in adults with nephrotic syndrome. Cochrane Database Syst Rev 10:CD004293

    Google Scholar 

  16. Tran TH, J Hughes G, Greenfeld C, Pham JT (2015) Overview of current and alternative therapies for idiopathic membranous nephropathy. Pharmacotherapy 35:396–411

    Article  CAS  PubMed  Google Scholar 

  17. Hahn D, Hodson EM, Willis NS, Craig JC (2015) Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst Rev 8:CD005128

    Google Scholar 

  18. Pohl M, Dittrich K, Ehrich JHH, Hoppe B, Kemper MJ, Klaus G, Schmitt CP, Hoyer PF (2013) Behandlung der Purpura-Schönlein-Henoch-Nephritis bei Kindern und Jugendlichen Therapieempfehlungen der Gesellschaft für Pädiatrische Nephrologie (GPN). Monatsschr Kinderheilkd 161:543–553

    Article  Google Scholar 

  19. Vecchio M, Bonerba B, Palmer SC, Craig JC, Ruospo M, Samuels JA, Molony DA, Schena FP, Strippoli GF (2015) Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev 8:CD003965

    Google Scholar 

  20. Chen Y, Li Y, Yang S, Li Y, Liang M (2014) Efficacy and safety of mycophenolate mofetil treatment in IgA nephropathy: a systematic review. BMC Nephrol 15:193

    Article  PubMed  PubMed Central  Google Scholar 

  21. Badid C, Desmouliere A, Laville M (2001) Mycophenolate mofetil: implications for the treatment of glomerular disease. Nephrol Dial Transplant 16:1752–1756

    Article  CAS  PubMed  Google Scholar 

  22. Zatz R, Noronha IL, Fujihara CK (2002) Experimental and clinical rationale for use of MMF in nontransplant progressive nephropathies. Am J Physiol Renal Physiol 283:1167–1175

    Article  Google Scholar 

  23. Azuma H, Binder J, Heemann U, Schmid C, Tullius SG, Tilney NL (1995) Effects of RS61443 on functional and morphological changes in chronically rejecting rat kidney allografts. Transplantation 59:460–466

    Article  CAS  PubMed  Google Scholar 

  24. Srinivas TR, Kaplan B, Meier-Kriesche HU (2003) Mycophenolate mofetil in solid-organ transplantation. Expert Opin Pharmacother 4:2325–2345

    Article  CAS  PubMed  Google Scholar 

  25. Staatz CE, Tett SE (2014) Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 88:1351–1389

    Article  CAS  PubMed  Google Scholar 

  26. Cohn RG, Mirkovich A, Caulfield J, Eugui EM (1999) Apoptosis of human activated peripheral T-cells and Tlymphocytic and promonocytic cell lines induced by mycophe nolic acid, the active metabolite of CellCept. In: The Sixth Basic Sciences Symposium of the Transplantation Society, Monterey, CA. p 173

  27. Cohn RG, Mirkovich A, Dunlap B, Burton F, Chiu SH, Dugui E, Caulfield JP (1996) Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines. Transplantation 68:411–418

    Article  Google Scholar 

  28. Andrikos E, Yavuz A, Bordoni V, Ratanarat R, De Cal M, Bonello M, Salvatori G, Levin N, Yakupoglu G, Pappas M, Ronco C (2005) Effect of cyclosporine, mycophenolate mofetil, and their combination with steroids on apoptosis in a human cultured monocytic U937 cell line. Transplant Proc 37:3226–3229

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi K, Reynolds M, Ogawa N, Longo DL, Burdick J (2004) Augmentation of T-cell apoptosis by immunosuppressive agents. Clin Transplant 12:72–75

    Article  Google Scholar 

  30. Nakamura M, Ogawa N, Shalabi A, Maley WR, Longo D, Burdick JF (2001) Positive effect on T-cell regulatory apoptosis by mycophenolate mofetil. Clin Transplant 6:36–40

    Article  Google Scholar 

  31. Blaheta RA, Leckel K, Wittig B, Zenker D, Oppermann E, Harder S, Scholz M, Weber S, Encke A, Markus BH (1999) Mycophenolate mofetil impairs transendothelial migration of allogeneic CD4 and CD8 T-cells. Transplant Proc 31:1250–1252

    Article  CAS  PubMed  Google Scholar 

  32. Blaheta RA, Leckel K, Wittig B, Zenker D, Oppermann E, Harder S, Scholz M, Weber S, Schuldes H, Encke A, Markus BH (1998) Inhibition of endothelial receptor expression and of T-cell ligand activity by mycophenolate mofetil. Transpl Immunol 6:251–259

    Article  CAS  PubMed  Google Scholar 

  33. Wu YG, Lin H, Qian H, Zhao M, Qi XM, Wu GZ, Lin ST (2006) Renoprotective effects of combination of angiotensin converting enzyme inhibitor with mycophenolate mofetil in diabetic rats. Inflamm Res 55:192–199

    Article  CAS  PubMed  Google Scholar 

  34. Chen FQ, Wang QY, Wei GZ, Ma XY, Ma DW, Deng WW, Sun WB (2014) Effects of mycophenolate mofetil on the expression of monocyte chemoattractant protein-1 and fibronectin in high glucose cultured human mesangial cells. Genet Mol Res 13:3154–3161

    Article  CAS  PubMed  Google Scholar 

  35. Takeda S, Takahashi M, Sado Y, Takeuchi K, Hakamata Y, Shimizu H, Kaneko T, Yamamoto H, Ito C, Ookawara S, Asano Y, Kusano E, Kobayashi E (2004) Prevention of glomerular crescent formation in glomerulonephritis by mycophenolate mofetil in rats. Nephrol Dial Transplant 19:2228–2236

    Article  CAS  PubMed  Google Scholar 

  36. Wu Y, Dong J, Yuan L, Liang C, Ren K, Zhang W, Fang F, Shen J (2008) Nephrin and podocin loss is prevented by mycophenolate mofetil in early experimental diabetic nephropathy. Cytokine 44:85–91

    Article  CAS  PubMed  Google Scholar 

  37. Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R (2003) Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 63:209–216

    Article  CAS  PubMed  Google Scholar 

  38. Fujihara CK, Malheiros DM, Zatz R, Noronha IL (1998) Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney Int 54:1510–1519

    Article  CAS  PubMed  Google Scholar 

  39. Romero F, Rodríguez-Iturbe B, Parra G, González L, Herrera-Acosta J, Tapia E (1999) Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int 55:945–955

    Article  CAS  PubMed  Google Scholar 

  40. Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, Benigni A (1999) Combining an antiproteinuric approach with mycophenolate mofetil fully suppresses progressive nephropathy of experimental animals. J Am Soc Nephrol 10:1542–1549

    CAS  PubMed  Google Scholar 

  41. Rodríguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chávez M, Herrera-Acosta J, Johnson RJ, Pons HA (2002) Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282:191–201

    Article  Google Scholar 

  42. Van den Branden C, Ceyssens B, Pauwels M, Van Wichelen G, Heirman I, Jie N, Verbeelen D (2003) Effect of mycophenolate mofetil on glomerulosclerosis and renal oxidative stress in rats. Nephron Exp Nephrol 95:93–99

    Article  Google Scholar 

  43. Penny MJ, Boyd RA, Hall BM (1998) Mycophenolate mofetil prevents the induction of active Heymann nephritis: association with Th2 cytokine inhibition. J Am Soc Nephrol 9:2272–2282

    CAS  PubMed  Google Scholar 

  44. Chiara M, Menegatti E, Di Simone D, Davit A, Bellis D, Sferch D, De Rosa G, Giachino O, Sena LM, Roccatello D (2005) Mycophenolate mofetil and roscovitine decrease cyclin expression and increase p27(kip1) expression in anti Thy1 mesangial proliferative nephritis. Clin Exp Immunol 139:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ziswiler R, Steinmann-Niggli K, Kappeler A, Daniel C, Marti HP (1998) Mycophenolic acid: a new approach to the therapy of experimental mesangial proliferative glomerulonephritis. J Am Soc Nephrol 9:2055–2066

    CAS  PubMed  Google Scholar 

  46. Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M (1999) Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 14:58–63

    Article  CAS  PubMed  Google Scholar 

  47. Wang W, Mo S, Chan L (1999) Mycophenolic acid inhibits PDGF-induced osteopontin expression in rat mesangial cells. Transplant Proc 31:1176–1177

    Article  CAS  PubMed  Google Scholar 

  48. Dubus I, Vendrely B, Christophe I, Labouyrie JP, Delmas Y, Bonnet J, Combe C (2002) Mycophenolic acid antagonizes the activation of cultured human mesangial cells. Kidney Int 62:857–867

    Article  CAS  PubMed  Google Scholar 

  49. Badid C, Vincent M, McGregor B, Melin M, Hadj-Aissa A, Veysseyre C, Hartmann DJ, Desmouliere A, Laville M (2000) Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney. Kidney Int 58:51–61

    Article  CAS  PubMed  Google Scholar 

  50. Nakhoul F, Ramadan R, Khankin E, Yaccob A, Kositch Z, Lewin M, Assady S, Abassi Z (2005) Glomerular abundance of nephrin and podocin in experimental nephrotic syndrome: different effects of antiproteinuric therapies. Am J Physiol Renal Physiol 289:880–890

    Article  Google Scholar 

  51. Lv W, Lou J, Zhang Y, Lian P, Qi D, Wang J (2015) Mycophenolate mofetil inhibits hypertrophy and apoptosis of podocyte in vivo and in vitro. Int J Clin Exp Med 8:19781–19790

    PubMed  PubMed Central  Google Scholar 

  52. Takano Y, Yamauchi K, Hayakawa K, Hiramatsu N, Kasai A, Okamura M, Yokouchi M, Shitamura A, Yao J, Kitamura M (2007) Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett 581:421–426

    Article  CAS  PubMed  Google Scholar 

  53. Lv W, Zhang Y, Guan G, Li P, Wang J, Qi D (2013) Mycophenolate mofetil and valsartan inhibit podocyte apoptosis in streptozotocin-induced diabetic rats. Pharmacology 92:227–234

    Article  CAS  PubMed  Google Scholar 

  54. Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63

    Article  CAS  PubMed  Google Scholar 

  55. Cheng CC, Lee YF, Lan JL, Wu MJ, Hsieh TY, Lin NN, Wang JM, Chiu YT (2013) Mycophenolate mofetil alleviates lupus nephritis through urokinase receptor signaling in a mice model. Lupus 22:554–561

    Article  CAS  PubMed  Google Scholar 

  56. Olejarz W, Bryk D, Zapolska-Downar D, Małecki M, Stachurska A, Sitkiewicz D (2014) Mycophenolic acid attenuates the tumour necrosis factor-α-mediated proinflammatory response in endothelial cells by blocking the MAPK/NF-kB and ROS pathways. Eur J Clin Invest 44:54–64

    Article  CAS  PubMed  Google Scholar 

  57. Huang Y, Liu Z, Huang H, Liu H, Li L (2005) Effects of mycophenolic acid on endothelial cells. Int Immunopharmacol 5:1029–1039

    Article  CAS  PubMed  Google Scholar 

  58. Bertalanffy P, Dubsky P, Wolner E, Weigel G (1999) Alterations of endothelial nucleotide levels by mycophenolic acid result in changes of membrane glycosylation and E-selectin expression. Clin Chem Lab Med 37:259–264

    Article  CAS  PubMed  Google Scholar 

  59. Raab M, Daxecker H, Karimi A, Markovic S, Cichna M, Markl P, Müller MM (2001) In vitro effects of mycophenolic acid on the nucleotide pool and on the expression of adhesion molecules of human umbilical vein endothelial cells. Clin Chim Acta 310:89–98

    Article  CAS  PubMed  Google Scholar 

  60. Hauser IA, Johnson DR, Thévenod F, Goppelt-Strübe M (1997) Effect of mycophenolic acid on TNF alpha-induced expression of cell adhesion molecules in human venous endothelial cells in vitro. Br J Pharmacol 122:1315–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weigel G, Bertalanffy P, Dubsky P, Griesmacher A, Wolner E (1999) Mycophenolic acid influences T helper 2 (Th2) cytokine induced expression of intercellular cell adhesion molecule-1 (ICAM-1) on human endothelial cells. Clin Chem Lab Med 37:253–257

    Article  CAS  PubMed  Google Scholar 

  62. Weigel G, Bertalanffy P, Wolner E (2002) Depletion of intracellular GTP results in nuclear factor-kappaB activation and intercellular adhesion molecule-1 expression in human endothelial cells. Mol Pharmacol 62:453–462

    Article  CAS  PubMed  Google Scholar 

  63. Haug C, Schmid-Kotsas A, Linder T, Jehle PM, Bachem MG, Gruenert A, Rozdzinski E (2002) The immunosuppressive drug mycophenolic acid reduces endothelin-1 synthesis in endothelial cells and renal epithelial cells. Clin Sci 48:76S–80S

    Article  Google Scholar 

  64. Shui H, Gao P, Si X, Ding G (2010) Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway. Mol Biol Rep 37:1749–1754

    Article  CAS  PubMed  Google Scholar 

  65. Copeland JW, Beaumont BW, Merrilees MJ, Pilmore HL (2007) Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation 83:809–814

    Article  CAS  PubMed  Google Scholar 

  66. Xiao X, Wang J, Chang X, Zhen J, Zhou G, Hu Z (2015) Mycophenolate mofetil ameliorates diabetic nephropathy through epithelial mesenchymal transition in rats. Mol Med Rep 12:4043–4050

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, Parra G, Herrera-Acosta J, Gómez-Garre D, Largo R, Egido J, Johnson RJ (2001) Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int 59:2222–2232

    Article  PubMed  Google Scholar 

  68. Noris M, Azzollini N, Pezzotta A, Mister M, Benigni A, Marchetti G, Gagliardini E, Perico N, Remuzzi G (2001) Combined treatment with mycophenolate mofetil and an angiotensin II receptor antagonist fully protects from chronic rejection in a rat model of renal allograft. J Am Soc Nephrol 12:1937–1946

    CAS  PubMed  Google Scholar 

  69. Krämer S, Loof T, Martini S, Rückert M, Wang Y, Böhler T, Shimizu F, Kawachi H, Neumayer HH, Peters H (2005) Mycophenolate mofetil slows progression in anti-thy1-induced chronic renal fibrosis but is not additive to a high dose of enalapril. Am J Physiol Renal Physiol 289:359–368

    Article  Google Scholar 

  70. Tapia E, Franco M, Sánchez-Lozada LG, Soto V, Avila-Casado C, Santamaría J, Quiroz Y, Rodríguez-Iturbe B, Herrera-Acosta J (2003) Mycophenolate mofetil prevents arteriolopathy and renal injury in subtotal ablation despite persistent hypertension. Kidney Int 63:994–1002

    Article  CAS  PubMed  Google Scholar 

  71. Yang B, Jain S, Pawluczyk IZ, Imtiaz S, Bowley L, Ashra SY, Nicholson L (2005) Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int 68:2050–2067

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Hackl.

Ethics declarations

Conflict of interest

LTW has received unrestricted scientific grants from Novartis Pharma GmbH and Roche Pharma AG.

AH and RE declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackl, A., Ehren, R. & Weber, L.T. Effect of mycophenolic acid in experimental, nontransplant glomerular diseases: new mechanisms beyond immune cells. Pediatr Nephrol 32, 1315–1322 (2017). https://doi.org/10.1007/s00467-016-3437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3437-y

Keywords

Navigation