Skip to main content

Advertisement

Log in

Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The angiopoietin/Tie-2 system plays an important role in the initiation of angiogenesis. However, the role of angiopoietin/Tie-2 in peritoneal angiogenesis and fibrosis is unclear. In our study we investigated the peritoneal morphologic changes in a uremic peritoneal dialysis (PD) rat model, focusing on the relationship between angiopoietin/Tie-2 and peritoneal angiogenesis. We subjected uremic (subtotal nephrectomy) rats to dialysis, using a standard PD solution, for 10 days, 28 days, or 56 days, and compared them with uremic rats that had not undergone dialysis and control rats. Functional [dialysate-to-plasma (D/P) creatinine; ultrafiltration (UF)] and structural (vessel density and thickness of the submesothelial extracellular matrix) changes of the peritoneum were quantified. Levels of angiopoietin (Ang)-1, Ang-2, Tie-2 and vascular endothelial growth factor (VEGF) were examined in the peritoneum by real-time quantitative polymerase chain reaction (PCR) and related to angiogenesis. The uremic group that had not undergone dialysis was characterized by increased vessel density in the peritoneum compared with that of the control, which correlated with decreased UF and increased D/P creatinine. Progressive angiogenesis and fibrosis were found in the PD groups when compared with the uremic non-dialyzed or control group, accompanied by an increased D/P creatinine that occurred in the PD group after 56 days, while UF decreased. Furthermore, Ang-2 and VEGF levels increased, while Tie-2 level decreased significantly in the uremic non-dialyzed group compare with the control. This tendency was more obvious in the PD groups than in the uremic non-dialyzed or control group, but no difference was found among the PD groups. Both VEGF and Ang-2 correlated positively with vessel density, while Tie-2 correlated negatively. We confirmed angiogenesis and fibrosis changes of the peritoneum as a result of uremic status and PD therapy in the uremic PD rat model. An increased level of Ang-2 and a reduced level of Tie-2 in conditions of uremia and PD therapy correlated with peritoneal angiogenesis and functional deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krediet RT, Lindholm B, Rippe B (2000) Pathophysiology of peritoneal membrane failure. Perit Dial Int 20 [Suppl 4]:S22–S42

    PubMed  Google Scholar 

  2. De Vriese AS, Mortier S, Lameire NH (2001) Neoangiogenesis in the peritoneal membrane: does it play a role in ultrafiltration failure? Nephrol Dial Transplant 16:2143–2145

    Article  Google Scholar 

  3. Saxena R (2008) Pathogenesis and treatment of peritoneal membrane failure. Pediatr Nephrol 23:695–703

    Article  Google Scholar 

  4. Ramsauer M, D’Amore PA (2002) Getting Tie(2)d up in angiogenesis. J Clin Invest 110:1615–1617

    Article  CAS  Google Scholar 

  5. Koh GY, Kim I, Kwak HJ, Yun MJ, Leem JC (2002) Biomedical significance of endothelial cell specific growth factor, angiopoietin. Exp Mol Med 34:1–11

    Article  CAS  Google Scholar 

  6. Pereira BJ, Poutsiaka DD, King AJ, Strom JA, Narayan G, Levey AS, Dinarello CA (1992) In vitro production of interleukin-1 receptor antagonist in chronic renal failure, CAPD and HD. Kidney Int 42:1419–1424

    Article  CAS  Google Scholar 

  7. Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, Krediet RT (1999) Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 19:517–525

    CAS  PubMed  Google Scholar 

  8. Chiang SC, Cheng CH, Moulton KS, Kasznica JM, Moulton SL (2000) TNP-470 inhibits intraabdominal adhesion formation. J Pediatr Surg 35:189–196

    Article  CAS  Google Scholar 

  9. Tugues S, Fernandez-Varo G, Munoz-Luque J, Ros J, Arroyo V, Rodes J, Friedman SL, Carmeliet P, Jimenez W, Morales-Ruiz M (2007) Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46:1919–1926

    Article  CAS  Google Scholar 

  10. Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ, Gauldie J (2002) Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 13:721–728

    CAS  PubMed  Google Scholar 

  11. Kalluri R, Sukhatme VP (2000) Fibrosis and angiogenesis. Curr Opin Nephrol Hypertens 9:413–418

    Article  CAS  Google Scholar 

  12. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed  Google Scholar 

  13. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514–18521

    Article  CAS  Google Scholar 

  14. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 96:1904–1909

    Article  CAS  Google Scholar 

  15. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  CAS  Google Scholar 

  16. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  CAS  Google Scholar 

  17. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  Google Scholar 

  18. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B, Cheng SY (2005) Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166:877–890

    Article  CAS  Google Scholar 

  19. Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457

    Article  CAS  Google Scholar 

  20. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314:738–744

    Article  CAS  Google Scholar 

  21. Takagi H, Koyama S, Seike H, Oh H, Otani A, Matsumura M, Honda Y (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 44:393–402

    Article  Google Scholar 

  22. Selgas R, del Peso G, Bajo MA, Molina S, Cirugeda A, Sanchez-Tomero JA, Castro MJ, Castro MA, Vara F (2001) Vascular endothelial growth factor (VEGF) levels in peritoneal dialysis effluent. J Nephrol 14:270–274

    CAS  PubMed  Google Scholar 

  23. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O (2000) Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11:717–728

    CAS  Google Scholar 

  24. Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41:278–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the National Natural Science Foundation of China (30600290) and the Science and Technology Commission of Shanghai Municipality (07QA14040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Fang or Jiaqi Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Fang, W., Ni, Z. et al. Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2. Pediatr Nephrol 24, 163–170 (2009). https://doi.org/10.1007/s00467-008-0944-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-0944-5

Keywords

Navigation